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1 Introduction

The subject of elementary algebra, hereafter referred to "algebra", is 

considered a fundamental skill in the civilized world. Equation solving in 

particular is one of the most basic skills that is taught in the subject of algebra. 

While the axioms and inference rules of algebra are well established and agreed 

upon, the methods of how to employ these axioms and rules are not taught using 

an explicit system [Bundy 1975]. It is know that when a person attempts to solve 

an equation they must be, to some degree, using some implicit system to select 

each new step. It is evident that they are not simply applying the axioms, 

theorems and inference rules of algebra randomly and indiscriminately, 

otherwise their “solutions” would be useless. Two questions then arises: what is 

the nature of these implicit systems, and how can more be learned about them? 

While it is clear that one or more systems for solving equations are in use by 

humans, and by computers that generate human like solutions, these systems are

usually opaque or difficult to understand. Humans cannot explain in any great 

detail how they are able to select the correct steps while solving equations 

[Bundy 1975]. Software that is designed to mimic human equation solving is 

usually not inspectable because it is closed source. While research into the 

nature of systems that can be used both by humans and computers exists, it did 

not develop the concepts necessary to apply it to education research. [Bundy A 

1983]. Therefore, this paper describes an initial conceptual framework for 

describing different aspects of these systems that can be used by educational 
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researchers.

1.1 Background of the Problem

This paper will refer to systems for solving equations that can be understood 

and followed by humans and be implemented by computers as psychologically 

plausible equation solvers (PPES). Research into characterizing and designing 

PPES systems started in the early 1970s. Dr. Alan Bundy was the first to consider

the problem of creating an equation solver that mimicked typical human 

equation solving methods [Bundy 1975]. He was studying meta-level inference 

for automatic theorem provers in the burgeoning field of artificial intelligence at 

The University of Edinburgh. The problem that early theorem provers presented 

to researchers at that time was they were not capable of selecting the correct 

steps to take in their inferences. A standard method that is used in classical 

artificial intelligence to navigate the exponential explosion of possible steps is 

heuristics or “rules of thumb” [Nilsson 1980]. However, Bundy wished to take a 

more scientific approach to the problem, and he selected the technique of meta-

level inference.

Bundy believed that a system for mimicking human equation solving would be

a appropriate entry point into meta-level inference research because equation 

solving was considered to be well understood. However, when he consulted the 

literature, he found that no explicit system existed for solving equations [Bundy 

1975]. While the axioms and transformation rules were established, there were 

no explicit methods recorded for how humans should solve equations. Further, 

when Bundy interviewed mathematicians, they could not explain how they were 
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able to quickly and directly solve equations. This led Bundy and other researches

at Edinburgh to create the equation solving system PRESS (PRolog Equation 

Solving System) which used meta-level inference. PRESS uses a meta-level 

description of the goal of solving an equation in order to select the steps in a 

solution, and it uses meta-level strategies to achieve this meta-level goal. The 

researchers at Edinburgh advanced PRESS to the point that it could solve most 

high school level algebra problems [Sterling L, Bundy A, Byrd L, O'Keefe R and 

Silver B 1982].

While it was the desire of the researchers at Edinburgh for the ideas 

implemented in PRESS to be used in education [Bundy personal correspondence,

Saturday, July 2, 2016], this has not occurred. One reason for this is that the 

original researchers were primarily interested in experimenting with meta-level 

inference, and working to apply PRESS to education was outside of their 

research goals. PRESS’s association with classical artificial intelligence has also 

likely prevented it from becoming well known. PRESS was created during the 

initial surge in artificial intelligence research. When it was found that artificial 

intelligence was considerably more difficult to create than was previously 

thought, a shortage of funding resulted known as the “AI winter”. Many projects 

lost funding, and artificial intelligence programs, like PRESS, were considered 

failures. This led most educational institutions to stop teaching classical artificial

intelligence topics. Thus, very few people today are capable of understanding 

and developing systems like PRESS. Other problems include: the general lack of 

software platforms capable of implementing PRESS's ideas, and a resistance to 
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read the relevant literature. For these reasons, the research that PRESS is based

on has largely been forgotten.

While PRESS was the earliest PPES, and the one most heavily based on 

published research, there are several other systems that have been created more

recently. Examples include the following:

System Open Source Based on PRESS Reference

MathXpert No Yes helpwithmath.com

MathSteps Yes No github.com/socraticorg/
mathsteps

MathPapa No ? mathpapa.com

Wolfram Alpha No ? wolframalpha.com

Symbolab No ? symbolab.com

Presston Yes Yes mathpiper.org

Table 1: List of PPESs

As this table indicates, most of these systems are not open source. This means 

their capabilities cannot be measured by inspecting their source code. Therefore,

any useful measurement of these systems must be based on their inputs and 

outputs. However, no conceptual framework or measurement system has been 

created yet that can be used to understand these PPESs.

1.2 Statement of the Problem

While the conceptual framework that PRESS is based on provides many 

insights into the nature of PPESs, it is still limited. A well developed conceptual 

framework for describing the full range of possible PPESs, including those in the 

above list, does not currently exist. This prevents focused deliberate 
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improvement or comparison of PPES systems for use in education. While the 

Edinburgh conceptualization of PPESs is advanced, it is specialized for the 

creation of PRESS. A more general conceptualization that accounts for more of 

the possible variations found in different PPESs, both human and automated, is 

required to advance educational research related to equation solving.

1.3 Purpose of this Paper

This paper describes and partially justifies the implementation of an initial 

conceptual framework for human and computer PPESs. Without such a 

conceptual framework, it is difficult to describe the characteristics of different 

PPES systems. This paper seeks to identify concepts and facts that are applicable

to PPESs. This paper will also consider the software-based measurement of these

concepts by using meta-level descriptions of the relationship between the input 

equations and their output solutions. Not every attribute of PPESs that will be 

considered will have an associated measurement program, but some attempt will

be made to describe how such a measurement might be implemented in 

software. The aim of this initial conceptual framework and the related 

measurement programs is not completeness but instead is to provide a starting 

point for further research using more sophisticated methods.

1.4 Significance of this Paper

 The conceptual framework that is used to characterize PPESs, and the 

resulting measurement programs, proposed in this paper are meant to help 

education researchers create theories about PPESs. One application of the 
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proposed framework is to provide a starting point for building systems that can 

show the strengths and weaknesses of automatic PPESs These results could then

be used to select or improve them. Another application is helping students 

improve their understanding of equation solving. Measurements of students 

based on this conceptual framework could be used to construct a model of the 

student's understanding. This model could then be used to advance the student 

by providing useful explanations or assigning appropriate problems. If this 

framework is developed to a sufficient degree, it would provide the language 

necessary to improve the teaching of equation solving in general.

1.5 Primary Research Questions

• What are some concepts and facts that are useful for characterizing 

PPESs? 

• How can these concepts be measured by software?

1.6 Overview of Conceptual Framework

This paper primarily seeks to identify concepts related to the characterization

of PPESs that can be incorporated into the theories of future research. The 

primary concepts developed in this paper will be the attributes of the equations 

and their solutions which are produced by PPESs. This paper does not offer a 

comprehensive theory for the usefulness of PPESs. It instead aims only to 

identify concepts and facts from both the literature and from observation that 

can form a language which can be used in future theories about PPESs. 

The concepts in the conceptual framework pull heavily from Tarski’s theory of
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stratified metalevels [Sowa 2000 p.320] as well as Bundy’s research into meta-

level inference for PPESs. The concepts in this conceptual framework have been 

selected for their potential usefulness in creating educational material, 

measuring automatic PPESs and building intelligent tutoring systems (ITS). 

This framework seeks to describe the attributes inherent in PPESs.

However, most of the attributes that would be of interest cannot be measured 

directly from the PPES. This is because most PPESs are closed source, in the 

case of computers, or subconscious, in the case of humans. Therefore structures 

in solutions will be included as concepts along with select attributes of these 

structures. The conceptual framework will seek to describe these attributes by 

categorizing them into different “tiers” of structures built of smaller structures. 

Attributes obtained from multiple solutions to equations from a given PPES will 

therefore be used to infer attributes of the PPES in the measurement programs. 

Each solution will contain steps. Each step will, usually, be an equation with one 

unknown. Each equation will contain sub-trees (see Appendix B). The conceptual 

framework measures attributes of the following structures:

• Subtree attributes

• Single step attributes

• Multiple step attributes

• Single solution attributes

• Multiple solution attribute

• Whole system attributes 
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The evaluation of attributes at each tier will be used in the attributes from sub-

tiers (i.e. multiple step attributes will be defined in terms of single step 

attributes). The conceptual framework will then focus on defining potentially 

useful attributes of the structures at each level (it should be noted that a PPES 

does not contain any of these structures, it generally generates them when given

an equation and is therefore more like an intension than an extension). 

1.7 Overview of Measurement Programs

For those concepts that will have a measurement program described, the 

measurement program will be written using the  MathPiper computer algebra 

system (CAS). There are several reasons for this. MathPiper is an education-

oriented CAS that has meta-language support. Without meta-language support, 

no description of PPESs would be possible. MathPiper facilitates experimentation

due to its worksheet format, and it is also open source which makes the results 

from this paper easier to access by future researchers. In addition, MathPiper 

has a PRESS inspired PPES called Presston which allows easy testing of the 

measurement programs created in this paper. MathPiper is therefore well-suited 

for this type of research.

Presston is still in development, and does not implement the whole of PRESS. 

However, Presston makes several additions to the methods used in PRESS in 

order to increase the detail of the solutions it produces. Presston uses a 

combinations of rewrite rules and symbolic procedures in order to solve 

equations. Since Presston is written in MathPiper, it avoids a problem that is 
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inherent with all computer algebras systems that are not designed for use in 

education, which is their automatic evaluation of expressions. Being written in 

MathPiper also facilitates experimentation by enabling the solver and the test 

code to easily interact. Generation of random equations is performed with 

procedures that are already included with MathPiper, and it also enables 

Presston to output LaTeX and other formatted information about the solutions it 

produces, which is useful for debugging. 

The main process that has been selected for testing these measurement 

programs is based on statistics. There are three steps in this process:

1. Generate a random equation.

2. Solve this equation using Presston and record the step-by-step solution.

3. Measure certain attributes of both the equation and the solution.

The data that will be used for the testing of the measurement programs 

will be generated using pseudo random processes. The data produced will be 

equations that contain addition, subtraction and multiplication. Note that 

division has not been used because Presston does not yet contain the rules that 

are necessary to solve equations containing division. Equations are generated 

using an abstract expression tree database that is included in MathPiper. 

Abstract expression trees, in this instance, refer to a tree structure whose root 

node is an equals sign, has operator placeholders for the non-leaf nodes and 

number placeholders for the leaves. The abstract expression tree database is 

exhaustively generated to a certain depth (see Figure 1). 
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Figure 1 Abstract Expression Tree Database

Each equation is generated by randomly selecting an abstract expression tree 

from the database and then randomly replacing each of the nodes with different 

operators and randomly replacing each of the leaves with constants and 

instances of the unknown.<Insert more example images> The number of 

instances of the unknown can be controlled. For example, if the researcher 

wished to create equations with exactly three unknowns, this can be done. These

equations are then solved using Presston. The result of these solutions is a list of 

the steps taken. After each equation is solved, a collection of attributes is 

measured from both the structure of the equation and the structure of the 

solution.

1.8 Assumptions 

There are several assumptions that the proceeding papers makes. It is 

assumed that there are no inconsistencies with the MathPiper language, 
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Presston or the random equation generator.

1.9 Limitations

There are two primary limitations of this paper. First, the conceptual 

framework is incomplete. This is to expected from an initial consideration of this 

topic. Second, sophisticated methods for creating measurement programs, such 

as pattern recognition, optimization, and using theorem provers to theorize 

about missing steps, have not been used. Other limitations includes the relatively

simple form of the equations solved due to the incompletness of Presston. 

1.10 Definition of Terms

Note that many of the definitions for terms in this paper are covered in the 

appendices. 

•  Appendix A: Meta-Level Languages and Object-Level Languages

◦ Meta-level

◦ Object-level

◦ Meta-strategy

◦ Meta-description

• Appendix B: The Language of Expression Trees

◦ Depth

◦ Distance

◦ Abstract expression tree

• Psychologically Plausible Equation Solver (PPES): Any algorithm that 
gives a step-by-step solution to an equation in a manner that either a 
human can understand and follow or at least mimics typical human 
equation solving methods. Note that this algorithm does not necessarily 
need to be implemented by a human or a computer. The term PPES refers 
to the algorithm itself.

• Computer Algebra System (CAS): A software system that has the 
capability of performing symbolic manipulations (as opposed to numerical 
calculations) such as simplifying expressions, solving equations, and 
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solving indefinite integrals. 

• Intelligent Tutoring System (ITS): A software system used for teaching 
a particular subject that uses student responses to create a model of the 
student’s understanding of that subject. The ITS then uses this model to 
perform actions such as assigning appropriate problems or providing 
explanations.

1.11 Summary

This paper seeks to create a conceptual framework for use in the education of

equation solving. It aims be be used used by education searchers and software 

developers to provide a language to describe the ways in which equations are 

solved. After covering relevant literature, this paper describes the beginnings of 

a conceptual framework. This starts by introducing aspects of a meta-language 

of algebra and definitions. It then precedes to describes concepts related to 

PPES algorithms and PPES output structures. Once this rudimentary theoretical 

framework has been described, the paper then covers a way to utilize this 

framework to perform basic experiments. The paper finishes by describing the 

shortcomings of this paper and future research opportunities.  
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2 Literature Review

This chapter covers the relevant literature related to the study and 

applications of PPES algorithms. The systematic study of PPESs is relatively 

limited due the specialized knowledge required to formalize equation solving. 

The most poignant literature on the subject of PPESs comes from the artificial 

intelligence researcher Alan Bundy and his associates, and it is covered in great 

detail. Literature covering some of the most potent applications of PPES 

research is also covered. These sections cover two of the most interesting 

applications of this research: PPES comparison and intelligent tutoring system 

creation. The case is made that these two applications are both feasible and 

useful. This chapter, along with the appendixes, lays the groundwork for the 

conceptual framework.

2.1 Meta-Level Inference for PPESs

This section covers the history of the first PPES research as well as outlining 

some of its later developments. It starts first with an in depth coverage of Alan 

Bundy’s artificial PPES called PRESS along with a history of later developments 

from Bundy and his associates. This is followed by a description of the operation 

of PRESS. This description forms the conceptual foundation for the conceptual 

framework presented in this paper. Lastly, some attention is paid to the minimal 

later research and development efforts in the area of PPESs.
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2.1.1 History of PRESS

Of central importance to the currant paper is the research performed at 

The University of Edinburgh between the early 1970s and the late 1980s because

it provides the principles upon which the measurement of step-by-step equation 

solutions is based. This research focused on modeling human equation solving 

using methods from classical artificial intelligence. This research was performed 

by Dr. Alan Bundy and his associates. This paper abbreviates Psychologically 

Plausible Equation Solvers as PPES. PPES refers to any algorithm for equation 

solving that attempts to mimic the methods humans typically use to solve 

equations. Bundy started his research into automatic PPESs as part of his 

research into meta-level inference for use in artificial intelligence. Bundy’s initial

belief was that such a widely taught subject as equation solving would have well 

defined strategies for performing each step in the solution. However, while it was

true that the axioms and rules of algebra were well established, the strategies 

for selecting the correct rule applied to the correct axiom at the correct point in 

the solution were not. This lead Bundy and other researchers at The University 

of Edinburgh to spend over a decade identifying these strategies and encoding 

them into software.

In his first paper on the subject, Bundy details an explicit method for 

human like equation solving [Bundy 1975]. The main motivations for conducting 

this research, beyond advancing meta-level inference, was the apparent lack of 

search exhibited by humans solving equations. Bundy observed that humans do 

not use any of the specialized techniques used by automatic theorem provers 
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such as normal forms and specialized data structures, but they still produce 

solutions that are direct and efficient. Bundy therefore aimed to create a meta-

level inference equation solver to mimic this non-specialized directness. In his 

initial paper, Bundy describes the meta-level goal of algebraic equation solving. 

He also created his core meta-level strategies for equation solving. There is no 

research suggesting these meta-level principles are the only way humans can 

solve equations. However, these principles are the only explicit theory for how 

humans solve equations, and they can be used to teach humans equation solving.

Since these meta-level principles are the only teachable theory of human 

equation solving, they will motivate the investigation for much of the rest of this 

paper.

After identifying meta-level principles and strategies that could 

theoretically mimic human equation solving, Bundy and his associates at The 

University of Edinburgh created the first automatic PPES called PRESS (PRolog 

Equation Solving System) [Bundy 1981]. PRESS implemented the meta-level 

principles that were detailed in Bundy’s 1975 paper using the programming 

language Prolog. It should be noted that Prolog was also created at The 

University of Edinburgh as part of their artificial intelligence research. PRESS 

uses pattern matching and rewrite rules to transform an equation into a solved 

form. It organizes these rewrite rules into meta-level strategies which are 

attempted if certain meta-level properties of the equation being solved are 

detected. While PRESS is capable of solving a wide variety of equations, the 

logical completeness of the solutions suffers from the fact that commutativity 
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and associativity rules are used automatically and are therefore not recorded as 

part of the solution. This paper uses a PPES that is heavily based on PRESS 

called Presston. As of the writing of this paper, Presston does not contain all of 

the capabilities of PRESS. However, Presston is designed so that it can explicitly 

show commutation and association transformations and thus seeks to be more 

explicit than PRESS, which is useful for educational purposes. 

Shortly after the release of PRESS, the researchers at Edinburgh started 

work on IMPRESS (Inferring Meta-knowledge about PRESS) [Sterling L and 

Bundy A 1981] which is a meta-theorem prover that uses meta-meta-rules to 

prove the correctness of newly created meta-rules that were added to PRESS. 

IMPRESS was created in order to support the ability of PRESS to automatically 

add new meta-rules by analyzing example equation solutions. It was an essential 

part of creating an improved version of PRESS called LP (Learning PRESS) 

[Silver 1986]. This improved version of PRESS was capable of learning new 

meta-rules from a single step-by-step equation solution. LP did this by detecting 

which known rule was applied at a given step and then analyzing any steps it did 

not recognize. While Presston does not yet implement any aspect of LP, it may be

useful in the future to implement aspects of LP in order to improve the 

measurement programs that are related to the conceptual framework proposed 

in this paper.

2.1.2 The Implementation of PRESS

Like all automatic PPESs, PRESS is designed to create a step-by-step solution 
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to a given equation. Each step of the solution will be some logical statement that 

is logically equivalent ( ⇔ ) to the original equation. The original equation also 

contains a variable that is designated as the “unknown”. 

PRESS consists of a theorem prover running in proof checker mode, an 

object-level and a meta-level. On the object-level there are rewrite rules [Bundy 

1983], which are the laws of elementary algebra combined with an inference rule

named "substitution" [Bundy 1975, Gries  D Schneider 1993]. The solutions 

created by PRESS are essentially proofs made by this theorem prover using 

these rewrite rules. This means that, regardless of what steps the theorem 

prover is directed to take, the result is logically correct. At the meta-level there 

are a number of strategies that are selected and attempted depending on certain

meta-level characteristics of the current form of the equation. These meta-level 

strategies apply the theorem prover at the object-level to take the next step in 

the solution. 

2.1.2.1 Goal of Equation Solving

In order to understand PRESS, and the conceptual framework in this paper, 

Bundy’s meta-level definition of a solved equation must be understood. If X is 

the unknown and S is some expression that does not contain X then:

1. X=S is a non-trivial solution for X .

2. If A and B are statements that are non-trivial solutions for X , then

A∨B is a non-trivial solution for X .

3. If A(C) is a non-trivial solution for X and D is a set of real numbers, 
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then ∃C∈D(A(C)) is a non-trivial solution for X .

4. The truth values True and False are trivial solutions for X .

5. If A  is a trivial or non-trivial solution for X , then A is a solution for

X .

This definition of a solved equation is fundamental. It reveals the goal of all 

equation solving, and it will make the following strategies easier to understand. 

It is also crucial for identifying the necessary constraints of PPESs.

2.1.2.2 Meta-Level Strategies of PRESS

PRESS has three basic strategies at the meta-level that are each used to 

select the next step. These strategies attempt a new step when certain meta-

level structures/patterns are present in the last step. Each strategy is associated 

with a set of rewrite rules that produce its intended syntactic effect. It is easiest 

to see the operation of PRESS by studying an example where x is being solved 

for:

1 ) ln(x+1)+ln(x−1)=3
2 ) ln((x+1)(x−1))=3
3 ) ln(x2

−1)= 3
4 ) x2

−1 = e3

5 ) x2
= e3

+1
6 ) (x = √e3

+1) ∨ ( x =−√e3
+1)

Figure 2: Step by Step 
Solution

2.1.2.2.1 Isolation

The strategy called "Isolation" is attempted when there is only one 
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occurrence of the unknown in an equation. Its syntactic effect is to reduce the 

depth of the single occurrence of the unknown. In the expression tree for line 3, 

there is only a single occurrence of x :

The isolation rules essentially “unbury” the unknown by applying the inverse 

functions and operations to the dominant operator of the side of the equation 

that contains the unknown. For example ln is the dominant function on the left 

side of the equals sign on line 3. The inverse, exponentiation of e , of ln is then

applied on both sides of the equation and then is simplified resulting in line 4.

Note that the unknown is now higher in line 4 than it was in line 3. 

Figure 3: Line 3

Figure 4: Line 4
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Decreasing the depth of a single instance of an unknown is the intended result of

applying the isolation strategy. Since line 4 also has only one instance of the 

unknown, the isolation strategy can and is applied again resulting in line 5:

Again the inverse of the dominant operator, in this case addition, is applied 

and the expression is simplified, and again the depth of the single unknown is 

reduced. Finally, another isolation rule is pattern matched and applied and we 

get the statement that is a solution of x :

Note that each of the equations under the ∨ has the unknown on the left 

Figure 5: Line 5

Figure 6: Line 6
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side by itself and that the unknown does not appear on the right side of either 

equation. This means that they are solved, and thus the whole expression is 

solved.

Every rule in the theorem prover that the isolation selects has the effect of 

moving the equation toward a solved state by getting the unknown by itself on 

one side of the equation. This, however, only works if there is only one 

occurrence of the unknown.

2.1.2.2.2 Collection

What if there are two or more occurrences of the unknown? Then PRESS 

attempts to use a strategy called "Collection". The collection strategy selects 

rules that have the syntactic effect of reducing the total number of occurrences 

of the unknown. It attempts to do this until either there is only one occurrence of

the unknown or it does not have any rules it can use on the equation. This is the 

strategy used to get from line 2 to line 3:

Note that the collection strategy reduces the number of unknowns from two 

Figure 7: Line 3Figure 8: Line 2
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to one. This then allows the isolation strategy to select rules that have been 

covered above and solve the equation.

2.1.2.2.3 Attraction

Sometimes the collection strategy is unable to reduce the number of 

occurrences of the unknown in an equation because their positions in the tree do

not match any of the collection rules. This can be seen in line 1:

There is no single collection rule that can be applied to any part of line 1 to 

reduce the number of unknowns. As will be shown in chapter 3, collection rules 

must always be used to solve equations with more than one occurrence of the 

unknown. There then needs to be some preparatory manipulation before a 

collection rule can be applied. The main preparatory strategy in PRESS is called 

"Attraction". With the attraction strategy, rules are applied that reduce the 

distance, in terms of the expression tree, of the unknowns from each other. 

Distance is defined in Appendix B: The Language of Expression Trees. Note that 

the total distance between the unknowns is reduced from 6 to 4. This is the 

Figure 9: Line 1
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objective of the attraction strategy. Theoretically, as the unknowns become closer

together, the likelihood that a collection rule can be applied increases. 

2.1.2.2.4 The Basic Method

Taking Isolation, Collection and Attraction together into one strategy, we get 

what Bundy calls the basic method [Bundy 1975]. This is the fundamental 

strategy of PRESS. PRESS attempts to use Isolation if there is only one 

occurrence of the unknown, and if that fails it searches for opportunities to apply

collection rules. If it cannot apply collection rules, it starts looking for 

opportunities to apply attraction rules to prepare for the use of the collection 

strategy. While these are not the only strategies in PRESS, they were the first 

ones to be implemented. They will help inform the concepts that are developed in

the proposed conceptual framework.

2.1.3 History of Other PPESs

There have been other PPSEs that have been created since PRESS. However, 

only one is known to have used any of the research from Edinburgh in its 

creation. The others are either closed source, and thus cannot be inspected, or 

are open source, and do not explicitly use meta-level principles. While most of 

the PPESs in the following table are not documented well enough to cover in this

section, MathXepert and MathSteps are:
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System Open Source Based on PRESS Reference

MathXpert No Yes helpwithmath.com

MathSteps Yes No github.com/
socraticorg/mathsteps

MathPapa No ? mathpapa.com

Wolfram Alpha No ? wolframalpha.com

Symbolab No ? symbolab.com

Presston Yes Yes mathpiper.org

Table 2: List of PPESs

The only reliable way to characterize closed source systems that do not have 

documentation on their implementation is to analyze the relationship between 

their inputs and corresponding outputs. This type of analysis is one of the main 

focuses of this paper. 

2.1.3.1 MathXpert

MathXpert is of interest within the current discussion because it is the only 

PPES that is known to have used some of the research performed by Bundy and 

his colleagues. MathXpert was written by Dr. Micheal Beason at San Jose State 

University [Beason 1996], and it is capable of creating solutions for problems in 

algebra, trigonometry and calculus. It is explicitly designed for education. While 

the software is closed source, Beason provides some insight into the construction

of MathXpert in one of his papers. Beason starts the paper by identifying eight 

principles that PPESs should follow. These are:

1. Cognitive fidelity: Creates solutions that are psychologically plausible.

2. Glass box: Every step taken by the system can be inspected by the user.
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3. Customized to the level of the user: Details about solutions can be 

hidden for advanced users.

4. Correctness: When producing solutions, they are logically correct.

5. User is in control: The user manually can take steps when solving a 

problem.

6. The computer can take over: If the user gets stuck, the computer can 

provide hints or worked solutions.

7. Ease of use: The application is easy to use.

8. Usable with standard curriculum: The application does not require 

large deviations from the standard mathematics curriculum. 

Beason then describes how MathXpert follows these principles in its design. 

Unlike PRESS, MathXpert supports many different problem types beyond 

equation solving. These include common fractions, indefinite integrals and even 

geometry problems. In order to maintain logical correctness, MathXpert has over

1000 different logically correct operations that it uses in the creation of problem 

solutions. These operations are used by a theorem prover to ensure logical 

correctness. Unlike PRESS, MathXpert does not exclusively use rewrite rules and

instead uses more general functions. Beason’s reason for not using rewrite rules 

exclusively is his belief that they are not flexible enough. Beason used concepts 

from Bundy’s research such as collection and attraction to prevent unwanted 

loops in MathXpert. Beason strove to produce problem solving strategies that 

were short and tidy. While Beason’s outline of MathXpert’s design principles 
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provides some insight into its operation, it is insufficient to make precise 

statements about its strengths and weaknesses. One of the applications of this 

paper would be the ability to describe the precise operation of systems like 

MathXpert both in general and how well they adhere to Bundy’s meta principles.

2.1.3.2 MathSteps

While most PPESs are closed source, MathSteps is a notable exception. The 

development of this project is more ad hoc in nature, and it does not make use of

any research that has been done on equation solving. Like with many open 

source projects, an interested developer will determine when new capabilities 

are required and then start adding code until the problem has been solved. The 

results of this paper could also be applied to MathSteps to determine the 

effectiveness of its design strategy.

2.2 Comparing CASs

Evidence for the usefulness of measurement programs can be found in Dr. 

Michael Wester’s research on measuring the strengths and weaknesses of 

computer algebra systems (CAS) [Wester 1999]. This evidence is made stronger 

by the fact that automatic PPESs are specialized CASs designed to solve 

equations in a human-like manner. Wester’s method of measuring the strengths 

and weaknesses of a given CAS starts by gathering together a large number of 

mathematics problems that should ideally be solvable by all CASs. These 

problems fall into a wide variety of categories such as indefinite integrals, 

equation solving, factoring, simplifying and other symbolic operations. This 
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forms what is called the "Wester test suite". The problems in this test suite are 

entered into a given CAS, and the results are recorded. These results are then 

placed into various classifications by a person depending on their simplicity and 

correctness. Once two or more CASs have been measured in this way, their 

relative strengths and weaknesses can be compared. A similar process could be 

preformed with the measurement programs that were developed for this paper.

Even though Wester’s system of comparison is relatively simple, it is has been

a standard way to compare the strengths and weaknesses of various CASs. This 

indicates that the comparison system being developed in this paper might be 

similarly useful. While this paper’s goal and Wester’s goal of creating 

measurement programs for symbolic manipulation systems is similar, the 

implementation of Wester’s measurement program and the measurement 

programs developed for this paper are very different. Wester’s program only 

considers the final answers produced by the CASs, but this paper’s programs 

primarily deal with the form of the step-by-step solutions. Further, Wester’s 

program requires a human to categorize the final answers whereas the programs

in this paper will be completely automated. Also, the they will use larger datasets

on a single problem type of equation solving. This paper's measurement 

programs also use a combination of statistics for general measurement and 

precise modeling for determining the adherence of a PPES to meta-level 

principles. Therefore, they will be more sophisticated and thus at least as useful 

as Wester’s framework for general purpose CASs.
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2.3 Intelligent Tutoring Systems (ITS)

One of the potentially potent future applications of this research is the 

creation of software capable of diagnosing a student’s misconceptions about 

equation solving. Software that is capable of modeling a student’s understanding

of a subject, and using that model to improve said understanding, is called an 

intelligent tutoring system (ITS) [VanLehn 1988]. In order to improve the 

student’s understanding of a subject area, the ITS will present problems to the 

student from that subject area. Using the responses given by the student, the ITS

will update a model of the concepts understood by that student. If the student's 

understanding is inadequate, the ITS will provide some form of remedial aid to 

them. 

An example of the power that ITSs have to significantly improve education is 

seen in the research into BUGGY [Brown JS and Burton RR 1978]. BUGGY was 

an ITS designed to diagnose misconceptions in students who were learning 

subtraction. In the initial research, teachers reported that many of their students

appeared to be making random errors while solving arithmetic problems. The 

teachers assumed that their students were having difficulty following directions. 

However, the researchers who created BUGGY noted that there were 

consistencies in the errors made by individual students. They hypothesized that 

the student’s were actually following a system of rules for creating their 

solutions, but some of these rules were incorrect or “buggy”.

BUGGY is designed to create and modify a model of a given student’s 

system of rules for solving subtraction problems. BUGGY initially contains a 
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model of an expert student as well as 330 incorrect or “buggy” rules. When a 

student makes mistakes while doing subtraction problems, BUGGY determines if 

these mistakes can be replicated using one or more of the “buggy” rules. In 

applying BUGGY to 1325 Nicaraguan students in the fourth, fifth and sixth 

grades who solved 15 subtraction problems, BUGGY hypothesizd that the reason 

approximately 40% of the students who had made significant errors was that 

they were using “buggy” rules.

A similar ITS called LMS was developed by Dr. D. Sleeman [Sleeman 1984]. 

The LMS system uses ordered collections of rewrite rules, similar to PRESS and 

Presston, to model students solving equations. Ordered collections of rewrite 

rules are also called “production systems”.  Sleeman determined that there are 

two possible sources of errors in student models. First is the inclusion of “buggy”

rules in the production system and second is the misordering of rewrite rules in 

the production system, even if they are logically correct. Although Sleeman does 

not reference the research performed at Edinburgh or any aspect of meta-level 

language, these two sources of error correspond with errors at the object-level 

and errors at the meta-level respectively. Logically incorrect “buggy” rules 

correspond to errors at the object-level, and incorrect ordering of the rules 

corresponds with errors in the meta-level. Each production system that models a 

student’s understanding of equation solving consists of an ordered list of 

logically correct and incorrect or “buggy” rewrite rules. Due to the factorial 

explosion of different models, LMS tests the student’s understanding of different 

rules by using different problem types. Each problem type only tests the 



 36/98

understanding of a handful of rules at a time. Thus LMS only hypothesizes about 

small portions of a student’s understanding at any given time which reduces the 

number of models considered. The framework along with the measurement 

programs in this paper could be used to improve the design of an ITS similar to 

LMS by using them to make more intelligent hypotheses about student models.
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3 The Theoretical Framework

This chapter forms the central focus of this paper. It presents an outline of a 

conceptual framework for equation solving. This framework is not complete, but 

it presents an improvement in the understanding of equation solving. This 

framework is broken down into three parts. The first part consists of the creation

of a meta-language for algebra and equation solving. This part includes the 

knowledge in the appendixes and the definitions in this chapter. The second part 

consists of a coverage of the algorithmic attributes of PPESs. This includes an 

attempt to identify different categories of PPESs. The third part consists of 

categorizing and describing the different structures and substructure that a 

PPES might output when solving an equation.  

3.1 Preliminary Definitions and Facts

The information from all appendices is assumed in the rest of this chapter. 

English will often be used as the metalanguage instead of meta-level symbols for 

readability. For example, this paper will often say ‘ "(1⋅x)⋅5 "  is a product’ 

instead of ‘ PRODUCT ("(1⋅x )⋅5 ") ’.

3.1.1 Definition of a Solved Equation 

Bundy’s meta-level definition of a solved equation is again repeated here 

because it is universal. If X is a variable symbol in the object language, referred

to as the unknown, and S is some expression that does not contain X then:

1. X "="S is a non-trivial solution for X .
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2. If A and B are statements that are non-trivial solutions for X , then

A "∨"B is a non-trivial solution for X .

3. If C is an object-level variable symbol that is different from X and

A(C) is a non-trivial solution for X and D is an expression that 

represents an object-level set of real numbers, then

"∃" C "∈" D "(" A (C ) ")" is a non-trivial solution for X .

4. The object-level truth values " true " and " false" are trivial solutions for

X .

5. If A is a trivial or non-trivial solution for X , then A is a solution for X

.

3.1.2 Definition of an Equation Step-by-Step Solution

A meta-level tuple T is said to be a step-by-step solution to an equation E

for some unknown X , which is a variable symbol from the object language, if

T satisfies the following: 

1. T 1=E .

2. For every T I , T I is logically equivalent to E at the object-level.

3. The last member of T must be a solved equation for the unknown X .

Since it is a common practice by both human and computer PPESs to omit 

steps, this definition of a step-by-step solution of an equation accounts for this 

possibility. This means that any given intermediate step could have been arrived 

at using multiple implied manipulations. This also means that a tuple containing 
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the original equation and a final solution as its only entries in that order would 

be considered a step-by-step solution of the original equation solved for the 

unknown.

3.2 PPES Algorithmic Facts and Attributes

The properties discussed in this section are those that apply to the PPES 

algorithm itself. These will generally be inaccessible in practice since most PPES 

implementations are either closed source or subconscious. This section first 

discusses how this paper will model the algorithms of PPESs using production 

systems. It then covers various types of rewrite rules that would have to be 

present in a PPES as well as various ways these rules could be employed.

3.2.1 An Outline of a Model for PPESs

3.2.1.1 Algorithms

The algorithm of a PPES could be expressed using a variety of formats. It 

could be expressed as a collection of rewrite rules placed into strategies that are 

attempted based on meta-level characteristics of the most recent step, as is done

in PRESS and Presston. A PPES could also use a more traditional procedural 

format, as it done in MathSteps and MathXpert. However, in order to ease the 

conceptualization of PPESs it is helpful to select a single representation that can 

be assumed to be the way that the PPES is implemented. This will allow 

assumptions to be made about the nature of PPESs that can then be used to 

conceptualize them. 

Meta-level inference combined with rewrite rules has been selected as the 
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representation of PPES algorithms in this paper. This representation is the most 

researched for use with PPESs and it provides a well defined distinction between

the object-level domain knowledge and the meta-level control knowledge [Van 

Harmelen 1991]. By using this representation of PPESs, concepts created during 

the research performed at Edinburgh can be incorporated more easily into this 

paper’s conceptual framework. By separating the object-level domain knowledge 

from the meta-level control knowledge they can be conceptualized separately. 

This is useful because the domain knowledge of algebra is well established and 

the control knowledge can then be studied with more clarity. Since rewrite 

systems are Turing complete [Godoy, G., & Tiwari, A. 2005], they can simulate 

any other implementation of a PPES algorithm. Since the rewrite rule system can

emulate any other implementation, the format in which the PPES was first 

implemented is irrelevant.

3.2.1.2 Meta-Level Control

Meta-level control in a rewrite rule system can be engineered in several ways.

Some of the main methods include the following:

1. The order in which the rewrite rules are placed in the rewrite rule system 

can be changed.

2. Preconditions can be placed on the rewrite rules.

3. The order in which rule pattern matching is done can be changed.



 41/98

3.2.1.3 Categorizing Rewrite Rules

The rewrite rules themselves can each be categorized several different ways. 

Here are some distinctions that can be made between algebraic rewrite rules 

using the meta-level language:

1. A rule can either rewrite only a subtree of an equation or the whole 

equation. 

a) If the rule only rewrites a subtree of an equation, then that rewrite rule 

will generally be based on an axiom or theorem which is a universally 

quantified equation. 

b) If the rule rewrites the whole equation then it will either 1) completely 

replace the equation with a disjunction of equations or an existentially 

quantified equation or 2) use the “whatever you do to one side of an 

equation you can do to the other” principle. 

2. As Bundy’s conceptualization of PPESs shows, a rewrite rule might, or 

might not, have one or more of the following effects. Note that the meta-

level effect of a rewrite rule is dependent on the preconditions placed on 

that rule by the meta-level control system that is applying the rule:

a)  The rule may reduce the depth of a subtree of an expression.

b) The rule may reduce the number of instances of a particular subtree in 

an expression.

c) The rule may bring two subtrees closer together within an expression. 



 42/98

3.2.1.4 Sameness Through Transformation

Another concept that should be considered is the notion that a part of an 

expression is the “same” before and after a rewrite. It is often stated that some 

subtree of an expression that has been rewritten using a rewrite rule is the same

before and after the rewrite. This can be formalized by considering any subtree 

that was matched to a pattern variable on the left side of a rewrite rule to be the 

same if that variable appears on the right hand side of the rewrite rule.

3.2.2 The Necessity of Depth Reducing, Collection and Pre-Collection 
Rules

Some generalizations can be made about the nature of a PPES algorithm. 

Among these are generalizations about the necessary meta-level effects that 

must be brought about by some applications of the rewrite rules in the PPES 

algorithm. The generalizations stated in this section are based on the above 

definition of a solved equation, particularly the fact that there is only one 

instance of the unknown that is at a depth of one below the equals sign in the 

tree of a solved equation. If the starting equation has more than one instance of 

the unknown, then rules must be applied that have the effect of reducing the 

number of instances of the unknown to one. If the equation ever has only one 

instance of the unknown that is not a child of the equals sign, then the depth of 

that instance must be reduced so that it is directly under the equals sign. It 

should be noted that the following types of rules, along with meta-level controls, 

could also be used to achieve meta-level goals in algebra other than equation 

solving such as simplification or factoring.
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3.2.2.1 Depth Reducing Rules

Depth reducing rules can be attempted on any single subtree within an 

expression. The subtree that is to have its depth reduced shall be called the 

targeted subtree. The effect of these rewrite rules, along with meta-level control,

is to reduce the depth of the targeted subtree. There are several different ways 

that the depth of a subtree can be reduced:

1. A rewrite rule that uses the fact that “whatever you do to one side of an 

equation can be done to the other” to apply an inverse function of the 

dominate operator of the side that contains the targeted subtree. This 

method is a generalization of Bundy’s isolation strategy. It will always be 

an option since every function has an inverse relation that can have zero or

more possible outputs for every input. This kind of depth reduction can be 

done in one or more steps, depending on the construction of the PPES. The

first step could introduce the inverse relation and the second step could 

use whatever cancellation axiom or theorem that is related to that relation 

to reduce the depth of the targeted subtree. Note that this kind of depth 

reduction can result in the equation being rewritten into a disjunction of 

equations, like when eliminating √ , or an existential statement containing

an equation, like when eliminating sin . It can also result in a 

contradiction. Note that if this process is done in two steps, the depth of 

the targeted subtree may be increased temporarily by the first step before 

the second step reduces it.

2. A rewrite rule that only rewrites part of the expression could also be used 
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to reduce the depth of a targeted subtree. For example, the associative 

property in rewrite rule form can be used to reduce the depth of the 

targeted subtree.

There are several strategies that a PPES can use with depth reducing rewrite 

rules to bring an equation closer to a solved state. 

1. If the most recent step has only one instance of the unknown and that 

instance is not at depth one as a direct child of the equals sign, then 

rewrite rules that reduce the depth of this single instance of the unknown 

must be used to reach a solved equation. This strategy will be called the 

"finishing depth-reduction" strategy.

2. If there is more than one instance of the unknown and all the instances of 

the unknown are on one side of the equation, then the smallest subtree 

containing all of the unknowns can have its depth reduced using the above 

methods. By the smallest subtree is meant the smallest subtree in the 

current expression. It is not the smallest possible subtree that could be 

reached through manipulation. This would generally result in this subtree 

being a direct child of the equals sign. Other rewrite rules would then be 

used to reduce the number of instances of the unknown to one. If at any 

point during this collection process the current smallest subtree containing

all of the instances of the unknown is not at depth one, then another depth 

reducing rewrite rule can be applied to this new subtree. This strategy will 

be called the "opportunistic depth reduction" strategy.
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3. If there is more than one instance of the unknown and all instances of the 

unknown are on one side of the equation, then the PPES can apply depth 

reducing rewrite rules to the smallest subtree containing all of the 

instances of the unknown, interspersed with other rewrite rules. This will 

be called the "mixed depth reduction" strategy.

3.2.2.2 Collection Rules

If there are two or more instances of a subtree in an expression that are 

identical, then a collection rewrite rule along with meta-level control can be 

attempted on these subtrees in order to reduce the total number of instances of 

them in the entire expression. Note that all instances of the subtree to be 

collected will have to be on the same side of an equation in order to be collected.

A PPES can use these types of rewrite rules in a few ways:

1. The rules can be attempted directly on the instances of the unknown 

themselves. This is Bundy’s collection strategy

2. The rules can be attempted on identical instances of subtrees which 

contain instances of the unknown. There are methods that will be outlined 

in the next section that prepare the tree for the use of this type of rule. 

This method is also used by Bundy in PRESS.

3.2.2.3 Pre-Collection Rules

Pre-collection rules are used to rewrite an expression into a form in which 

collection rules can be successfully applied. There are several different forms of 
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these pre-collection rules:

1. Attraction rules are those rewrite rules that bring two or more subtrees 

closer by reducing the number of arcs that must be traversed in order to 

reach every subtree. Since the patterns on the left side of every collection 

rewrite rule only have a limited size, reducing the size of the smallest 

subtree containing all the instances of the subtree we are trying to apply 

collection to increases the chances that a collection rule will match. This is 

essentially Bundy’s attraction strategy. 

2. The "homogenization pre-collection" strategy. This strategy searches for 

ways to change different subtrees that contain instances of the subtree 

that is to be collected into an identical form so that collection can be 

performed on them. This is a generalization of Bundy’s homogenization 

strategy.

3. "Specialized pre-collection" rules are each only used to prepare for a 

specific collection rule. For example, if bag structures are not used in the 

PPES, factoring out two instance of the unknown may require a specific 

ordering to be used, thus a specialized pre-collection rule may be applied 

to achieve this reordering. Note that, due to the less explicit nature of 

PRESS, these specialized rewrite rules do not appear in it.

3.3 PPES Output Facts and Meta-Level Functions and Predicates

This section identifies and explores various meta-level functions and 

predicates that take meta-level structures found in the step-by-step solutions 
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produced by PPESs and return useful information. This section has been 

separated into five tiers of meta-functions. Each tier contains functions that take 

structures of a certain type. Each tier uses the structures from the lower tiers to 

define the structures at its own tier. All tiers of meta-functions are ultimately 

based on the primitive concepts discussed in the appendices. 

3.3.1 Sub-Equation Meta-Level Functions and Predicates

Sub-equation meta-functions are those functions that take as their inputs 

expressions that represent numbers. Thus any expression that contains logical or

set theory symbols will not be considered in this section. All of the attributes in 

this section will be about subtrees. 

The following list are predicates and functions that can be applied to 

expressions that represent numbers:

• Sum Predicate

• Addends of Sum Function

• Product Predicate

• Factors of Product Function

• Polynomial Predicate

• Rational Predicate

• Transcendental Predicate
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3.3.2 Single-Step Meta-Level Functions and Predicates

Single-step meta-level functions and predicates take a single entry in a step-

by-step solution of an equation as their inputs. In general, they will apply to a 

single equation. However, when a step is more complex, they could apply to each

equation that is present in that single step such as when the step is a disjunction.

3.3.2.1 Instances of the Unknown Meta-Level Function

When solving an equation, the configuration of all the instances of the 

unknown is very important. Since the equation must be rewritten into a form that

has only one instance of the unknown by itself as a child of the equals sign, 

identifying if a rewrite brings the equation closer to this final state allows for 

proper meta-level control. 

3.3.2.1.1 Positions of Unknowns Function

This function takes an equation as an input and outputs a set of tuples that 

represent the positions of all of the instances of the unknown in the equation 

tree. This function returns the most information of all the functions related to 

instances of the unknown, and all the other unknown related functions can be 

based on this function.

3.3.2.1.2 Number of Unknowns Function

This function takes a single equation as its input and outputs a non-negative 

integer which represents the number of instances of the unknown. This function 

is important for measuring the success of collection rewrite rules.
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3.3.2.1.3 Smallest Unknown-Containing Subtree Function

This function takes a single equation and returns the position where the 

smallest subtree containing all the instances of the unknown is. If instances of 

the unknown appear on both sides of the equation, then the function will return 

an empty tuple that indicates the whole tree is the smallest subtree which 

contains all of the instances of the unknown. This function can be useful when 

answering questions about whether a PPES is using an opportunistic depth-

reduction strategy or a mixed depth-reduction strategy. 

3.3.2.1.4 Maximum Depth of Unknown Function

This function takes a single equation as an input and returns a positive 

integer which is the maximum depth at which an instance of the unknown 

appears. Since a solved equation must have the unknown as one of the children 

of the equals sign, measuring the depths of the instances of the unknown can 

indicate how close the equation is to being solved.

3.3.2.1.5 Minimum Depth of Unknown Function

This function takes a single equation as an input and returns a positive 

integer which is the minimum depth at which an instance of the unknown 

appears in the equation.

3.3.2.1.6 Distance Between All Unknowns Function

This function takes a single equation as an input and outputs a non-negative 

integer which represents the total distance between all of the unknowns. Since 

each instance of the unknown is a leaf of the equation tree, the instances of the 
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unknown can be ordered from left to right. There will then be some number of 

arcs that connect each instance of the unknown to the next instance of the 

unknown. The total distance between all instances of the unknown is defined as 

the sum of all the lengths between these consecutive instances of the unknown. 

3.3.3 Multi-Step Meta-Level Functions and Predicates

Multi-step functions are those functions that take more than one step to as 

input. These functions will primarily be used to identify changes made from one 

step to the next and thus will focus on two consecutive steps in a solution. 

3.3.3.1 Consecutive Step Functions

Consecutive step functions take two consecutive steps as input. These 

functions can be used to provide insight into the missing information between 

steps if a PPES performs multiple transformations in one step. 

3.3.3.1.1 Number of Unknowns Change Function

This function takes two consecutive equations in the step-by-step solution to 

an equation from a particular PPES and returns an integer which is the number 

of instances of the unknown for the second equation minus the number of 

instances of the unknown in the first equation. This indicates how many depth 

reducing rewrite rules were used in between the two steps.

3.3.3.1.2 Maximum Depth Change Function

This function takes two consecutive equations in the step-by-step solution to 

an equation from a particular PPES and returns an integer which is the 
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maximum depth of the unknown for the second equation minus the maximum 

depth of the unknown in the first equation. This indicates how many collection 

rewrite rules were used between the two steps.

3.3.3.1.3 Distance Change Function

This function takes two consecutive equations in the step-by-step solution to 

an equation from a particular PPES and returns an integer which is the distance 

between all the instances of the unknown for the second equation minus the 

distance between all instances of the unknown in the first equation. This 

indicates how many attraction steps were taken between the two steps.

3.3.4 Single-Solution Meta-Level Functions

Single-solution meta-level functions take a single step-by-step solution of an 

equation for some unknown.

3.3.4.1.1 Number of Steps Function

This function takes a step-by-step solution and returns the number of steps 

that are in that solution. This can be used to compare the level of detail provided 

by different PPESs as well as the level of detail between different types of 

problems. This property can also be used to identify relationships between the 

structure of the equation and the number of steps in the solution.

3.3.5 Multi-Solution Meta-Level Functions and Algorithms

This tier does not consist of proper functions in the mathematical sense, 

although some are included. It instead mostly consists of algorithms that help to 
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generate theories about a PPES whose algorithm is inaccessible. Since this is the

top level-tier, the generation of the equations that are used to make these 

solutions must also be considered in addition to the way they are solved. There 

are several broad methods of making and measuring multiple step-by-step 

solutions.

3.3.5.1 Random Equation and Statistics Approach

This approach of using multiple solutions is the easiest. In it, equations are 

randomly generated and solved. Statistics are then collected on these step-by-

step solutions by using lower tiers of meta-level functions. Of particular interest 

is the calculation of steps and their correlation with other numerical attributes of

the initial equation. This can give some idea of what structures in the initial 

equation contributed to the length of solutions. The implementation of this 

approach in MathPiper will be covered in chapter 4.

3.3.5.2 Pattern Recognition Approach (Not Implemented)

A more sophisticated method would start by randomly generating a database 

of equations along with their solutions, but instead of selecting the statistics to 

measure as above, apply pattern recognition software to detect relationships 

between all of the initial equations and the various structures and sub-structures

within their corresponding step-by-step solutions of that equation.

3.3.5.3 Intelligent Modeling Approach (Not Implemented)

An even more sophisticated approach would consist of using the constraints 

placed on acceptable PPES algorithms revealed in the above conceptual 
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framework to create hypotheses about the algorithm that is being used in a 

particular PPES. Then provide equations that test these hypotheses by predicting

what the PPES might do to solve a particular equation for each hypothesis and 

then check if the PPES takes any of these predicted approaches. 
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4 Implementation of Measurement Programs in MathPiper

This chapter is meant to help future researchers and software developers to 

recreate some of the software that has been based on the above conceptual 

framework. In particular, it will provide guidance as to how a random equation 

and statistics approach for characterizing a PPES may be implemented in 

software. It will cover the choice of programming language and the reasons for 

making that choice. It discusses aspects of random equation generation as well 

as some aspects of the PPES used. It then considers a possible way to set up 

experiments. It finishes with the creation of a couple simple linear regression 

models relating numerical attributes of the starting equation to the number of 

steps in the step-by-step solution. 

These regression models have been selected because they are related to 

depth reducing and attraction strategies that must be used in a PPES. They are 

based on 1000 randomly generated equations and their resulting solutions 

created using Presston. The three numerical attributes of these equations and 

resulting solutions that have been selected are:

1. The maximum depth for all the instances of the unknown in the starting 

equation.

2. The total distance between the instances of the unknown in the starting 

equation.

3. The number of steps in the step-by-step solution made by Presston.
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4.1 Construction of Experiments

A MathPiper worksheet has been created that includes all of the procedures 

that are required for experimentation. The steps of this initial experimentation 

are:

1. Generate a list of random equations using the method described below. 

Note that as part of this step, the depth of the abstract expression tree 

database, the number of unknowns, the range of numbers and letters to be 

used for leaves and the set of operators that are randomly selected from 

must be decided. Those equations are saved in case other researchers wish

to repeat the experiment with the exact same equations. 

2. A loop is run that walks through the list of randomly generated equations 

and uses a PPES to obtain the step-by-step solutions for these equations in 

the PPES. The attributes that the researcher desires to measure are then 

obtained from the solutions before the next equation is solved. 

3. Finally, after obtaining the attributes from all of the equation solutions, 

statistical analysis can be preformed such as measuring proportions or 

linear regression between numerical attributes.

4.2 Functionality of MathPiper

MathPiper was selected as the CAS to build the prototype experimental 

framework for the measurement programs to be tested. MathPiper is an open 

source CAS being developed at Shawnee State University, which is written in the

Java programming language. Built on top of this Java base is the MathPiper 
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language, which is a version of the Lisp programming language. The MathPiper 

interpreter hides the underlying Lisp syntax with a traditional infix syntax to 

increase readability. MathPiper is distributed with an IDE (Integrated 

Development Environment) called MathPiperIDE. MathPiperIDE uses plain text 

files to work with the MathPiper source code. The text files are given a .mpws 

extension and use a worksheet format like many other CASs such as 

Mathematica and Sage. MathPiperIDE also includes several additional 

applications bundled with it that allow it to output visual representations of 

various types.

MathPiper has several capabilities that make it suitable for experimenting 

with algebraic meta-level inference. The MathPiper language has been designed 

to have both procedural and declarative capabilities. This makes it easy to 

implement a PPES and then experiment on it. Since MathPiper is a CAS, it has 

the ability to treat symbols as their own data type and supports many symbolic 

manipulation techniques. MathPiper also has tree manipulation and 

representation capabilities. All of the diagrams of trees in this paper have been 

created using procedures in MathPiper. The tree manipulation procedures in 

MathPiper have been used to construct many of the procedures that are used in 

the measurement programs. 

Another symbolic advantage that MathPiper has is the ability to implement 

systems of rewrite rules. Most of the CAS symbolic procedures in MathPiper are 

implemented using rewrite rules. MathPiper supports a variety of preconditions 

on these rewrite rules. It also supports local rewrite rule sets, which makes 
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experimenting with new rule sets possible for users. The prototype of a PPES 

called Presston has been implemented in the MathPiper language and is included

with the distribution of MathPiperIDE as of the writing of this paper.

Presston is a PRESS inspired PPES that is implemented and included in 

MathPiper. As of the writing of this paper, Presston is still in the alpha stage of 

development. It uses many of the same strategies used in PRESS, although they 

are called by different names. Versions of the isolation, collection and attraction 

strategies are partially implemented in Presston. Presston deviates from PRESS 

by not using bag structures for its sums and products. Presston handles some of 

the complications that this introduces by using normal forms for sums and 

products. It is hoped that through the process of this research, better solutions 

than normal forms will be identified to handle the pre-collection portions of 

Presston.

4.3 Generating Random Equations

In order to make accurate and precise inferential statistical models 

containing attributes from a particular PPES, an understanding of random 

equation generation must be obtained. Of particular interest when generating 

random equations is the distributions of numerical and categorical attributes 

produced. Assumptions of any statistical models based on these attributes must 

be made true by the equation generation algorithm. This section demonstrates a 

method for generating equations that has significant shortcomings for inferential

statistics and gives some insight as to how these shortcomings may be 
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eliminated. It is meant to outline the difficulties encountered when randomly 

generating equations, but it does not claim to solve these difficulties.

4.3.1 Naive Method

This section describes a method for generating random equation that will be 

refereed to as the “naive method”. The tree capabilities in MathPiper allow a 

unique way of creating random equations which is used in the experiments. This 

method is centered on the concept of an “abstract expression tree”. An abstract 

expression tree contains operator meta-level symbols (represented by uppercase 

"O"s) and leaf node meta-level symbols (represented by uppercase "L"s) in a tree 

structure. These symbols are generic place holders that can later be replaced 

with actual object-level operator, constant and variable symbols, but the abstract

expression tree does not contain any operator, constant or variable symbols 

itself. Examples of abstract expression trees are shown in Figure 10.

Figure 10: Abstract Expression Tree Databases
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The method used for generating equations is as follows:

1. The process starts with the exhaustive creation of a database of abstract 

expression trees down to a specified depth. This allows control of the 

maximum depth of the equations generated from this method. This means 

that if a depth of 3 was selected during the creation of the database, every 

possible form of abstract expression tree that has a maximum depth of 1, 2 

or 3 would exist in the database. See Figure 10. 

2. A predetermined number of instances of the unknown is then selected by 

the researcher.

3. Once the database has been created, an abstract expression tree is 

randomly selected. It should be noted that each of the abstract expression 

trees in the database are unique and equally likely to be picked during 

equation generation with this method. 

4. leaves from the selected abstract expression tree are randomly chosen to 

be changed to an instance of the unknown. 

5. The other leaves are then changed into either letter constants or number 

constants according to the desire of the researcher. 

6. Finally, the root node is changed to an equals sign and the rest of the 

operator symbols are each randomly changed to one of a set of accepted 

operator symbols. This process allows much control over the generation of 

random equations.
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A set of 1000 random equations were created for the purposes of testing. A 

depth of 4 was selected for the creation of the abstract expression tree database.

The number of instances of the unknown placed in each equation during 

generation was set to 2. The non-unknown leaves are randomly replaced by 

consecutive integers starting at 1. The set of operator symbols that were placed 

in the place holders were addition, subtraction and multiplication. The random 

equations that were generated have been recorded in the MathPiper worksheet 

for repeatably. Every set of measurements taken from a list of random equations 

is repeatable if these equations are saved.

The following attributes of the step-by-step solutions were measured:

1. The maximum depth of instances of the unknown in the initial equation.

2. The number of unknowns in the initial equation.

3. The distance between the unknowns in the initial equation.

4. The number of addition signs in the initial equation.

5. The number of subtraction signs in the initial equation.

6. The number of multiplication signs in the initial equation.

7. The number of steps in the step-by-step solution.

8. A list of each rule used in the order they were used by Presston.

9. A list of the meta-level strategy at each step used by Presston.

Note that the items 8 and 9 could only be measured in a PPES that provides 
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this information, which most do not. However, it is hoped that in the future there 

will be ways to deduce which rewrite rule or meta-level strategy was used at 

each step, and this simulates that capability. 

4.3.2 Shortcomings of the Naive Method

There are two shortcomings with the naive method. 

1. The distribution of numerical attributes of the generated equations, such 

as maximum depth of the unknown and distance between the unknowns, 

are not normally distributed. 

2. The numerical attributes that one may wish to use as independent 

variables in a statistical model are moderately correlated.

The distributions of three numerical attributes of the randomly generated 

equations will be considered here to demonstrate the need for a better method of

random equation generation. These numerical attributes are of interest because 

they will be used to construct a collection of regression models. These attributes 

are: the maximum depth of all instances of the unknown in the starting equation,

the total distance of the instances of the unknown in the starting equation and 

the total number of steps in the Presston produced solution. A list of 1000 

randomly generated equations was created using the naive method to 

demonstrate the shortcomings of such a method. This will motivate a discussion 

about how to overcome these shortcomings in the next section.
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4.3.2.1 Attributes Not Normally Distributed 

The descriptive statistics and histograms obtained from the numerical 

attributes of the 1000 randomly generated equations and their solutions are 

included in Table 3. It should be noted that all attributes are discrete.

Maximum Depth Total Distance Step Count

Mean 3.830 5.879 19.588

Median 4 6 19

Standard Deviation 0.402 1.731 6.051

IQR 0 2 9

Range 2 2 34

Q1 4 5 15

Q3 4 7 24

Minimum 2 2 6

Maximum 4 8 40

Table 3: Descriptive Statistics

Figure 11: Starting Maximum Depth Histogram



 63/98

The histograms in Figure 11 and Figure 12 show one of the main 

shortcomings of the naive method for random equation generation stated above. 

As can be seen in Figure 11, the distribution of the starting maximum depth of 

the unknown is heavily left-skewed. In addition, Figure 12 shows that the 

distribution for the starting total distance between all of the instances of the 

unknown is also heavily left-skewed. If the assumptions of a statistical model, 

such as the regression models shown later, state that the distributions of certain 

Figure 12: Starting Total Distance Histogram

Figure 13: Step Count Histogram
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numerical attributes must be normal, the naive method produces equations that 

violate these assumptions.

The fact that these distributions are skewed becomes obvious upon reflection.

In the database of abstract expression trees, there are far more abstract 

expression trees with leaves at deeper levels than there are at shallower levels. 

While the functional relationship between the number of abstract expression 

trees at a particular maximum depth level and that depth level has not been 

determined, a lower bound is 2x . Since every bottom level leaf of every abstract

expression tree at a given level can be replaced with an operator symbol and 

since each abstract expression tree at that level has at least two such leaves, the 

next level must therefore have at least twice the number of abstract expression 

trees as the previous level. 

Since each abstract expression tree in the generated database is equally 

likely to be selected, it is far more likely that one with a deeper maximum depth 

will be selected. Since each leaf of this abstract expression tree is equally likely 

to have an instance of the unknown placed in it, there are going to be far more 

equations with a maximum depth of the unknown at a deeper level. Similarly, the

abstract expression trees that have a deeper maximum depth also have a 

proportionally wider base. This means that there are more opportunities for a 

random equation generated using the naive method to have unknowns further 

apart and thus result in a larger starting total distance between the instances of 

the unknown. This also results in a left-skewed distribution for the starting total 

distance attribute.
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4.3.2.2 Undesirable Correlations of Numerical Attributes

The following is a summery of the regression model created with maximum 

starting depth predicting starting total distance:

Model: ^Distance=b0+b1 Depth

r 0.332

b0 0.404

b1 1.429

Table 4: Distance and Depth Regression

While a full regression analysis has not been performed, it can be seen that 

there is a relationship between the two numerical attributes. This is undesirable 

because they are to be used as independent variables in a linear regression.

4.3.3 Ways to Improve the Naive Method

The main two problems with the naive method are that the distributions of 

the numerical attributes, in this case starting maximum depth and starting total 

distance, are not normally distributed and they are correlated. It is technically 

impossible for discrete distributions to follow a normal distribution, so the goals 

for an improved random equation generation method are: 

Figure 14: Depth and Distance Regression Line
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1. Specify the discrete joint probability distribution of the constrained 

numerical attributes so that the individual attributes are normally 

distribution and are not correlated. This could be achieved practically by 

assigning a number between 0 and 1 to each possible combination of 

values for the numerical attributes whose sum is 1.

2. Create a dataset that has approximately the specified proportion of 

equations for each combination of the constrained numerical attributes.

 There are several ways in which a dataset with the desired properties may be

created. The easiest would be to create a dataset of equations using the naive 

method and then select a subset of those equations which approximately creates 

the desired proportion of equations for each combination of values from the 

constrained numerical attributes.

Another more sophisticated method for improving the distributions of the 

numerical attributes of the randomly generated equations would be to adjust the 

probability of generating equations with certain values for their numerical 

attributes. There are two places in the naive method where probabilities are 

assigned uniformly:

1. The selection of which abstract expression tree to generate a random 

equation with.

2. The selection of which leaves of the abstract expression tree will be 

replaced with instances of the unknown.

There are at least a few options for assigning probabilities to both of these 
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selections:

1. Create a finite set of mutually exclusive and exhaustive subsets of the 

abstract expression trees down to a specified depth, and assign 

probabilities to each subset. Once a subset has been randomly selected, an 

abstract expression tree would be selected from the subset with equal 

likelihood assigned to each member of the subset. The instances of the 

unknown would be assigned as in the naive method with equal likelihood.

2. Assign a probability to each abstract expression tree in the database 

individually and handle instances of the unknown as in the naive method.

4.4 Regression Models

The two simple linear regression models that have been created using these 

variables are:

1. Using starting maximum depth to predict step count.

2. Using starting total distance to predict step count.

A model combining depth and distance as predictors was not created because

of the shortcomings of the random equation generation method which would 

invalidate any further work performed on such a model. While the random 

equation generation method invalidates these models, they have been included 

for demonstrating the possible statistical models that can be created for a PPES. 
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Model: ^Steps=b0+b1Depth ^Steps=b0+b1Distance

r 0.365 0.663

b0 -1.428 5.960

b1 5.487 2.319

Table 5: Regression Models

If the PPES that a linear regression model comes from is both efficient and 

does not omit steps, then it should be expected that there will be one or two 

depth reducing steps for every level increase in the starting maximum depth of 

the unknown. If there is less than this, then steps are likely being omitted. With a

slope for the first regression model, as seen in Table 4 and Figure 15, that is 

considerably higher, it is likely that the skewing of the depth distribution and the

Figure 15: Depth and Steps Regression Line

Figure 16: Distance and Steps Regression Line
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correlation with the starting total distance is causing an inflated value for the 

slope. This may also account for the first model’s relatively low correlation 

coefficient. 

A similar, although less severe result, can be observed with the second 

model, as seen in Table 4 and Figure 16. Again, a single arc increase in the 

starting total distance between the instances of the unknown should result in at 

most one or two more steps in the solution. Much less than that would indicate 

that steps are being omitted. It is also likely that the skewed distribution and 

correlation with starting maximum depth is contributing to the inflated slope 

value for the second model. No further analysis was preformed due to the bad 

dataset. 
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5 Conclusion

This chapter is meant summarize the results fro the tapper, the shortcomings 

of this paper and the posible future research that can be done in this area.

5.1 Summary

This paper has presented the beginnings of a conceptual framework for 

equation solving. This conceptual framework is far from complete, but it allows 

some amount of progress to be made in understanding the nature of PPESs. This 

conceptualization is meant to be used to improve the education of equation 

solving. At the most basic level of application, it is hoped that the 

conceptualization itself can be taught with the goal of improving the efficiency 

and effectiveness of learning equation solving. The conceptual framework is also 

meant to eventually be used by researchers who wish to characterize either the 

equation solving methods of different people or the equation solving methods 

being taught. Refined versions of this conceptualization should also help 

software developers to describe and develop educational software for teaching 

equation solving. The ultimate application of research into PPESs would be the 

creation of a ITS for equation solving.

5.1.1 Construction of the Conceptual Framework

The conceptual framework presented in this paper has been separated into 

three parts. These parts may be merged or split in the future as the research 

continues, but they provide an adequate structure for the time being. The first 
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part is the formation of a formal meta-language which provides the most basic 

concepts necessary to define the rest of the concepts. This part has largely been 

placed in the appendixes. Second is the conceptualization of the algorithmic 

attributes of a PPES. Third is the conceptualization of the output attributes of 

PPESs. These together form the conceptual framework.

The understanding that a meta-language must be used in order to precisely 

describe the strategies used in equation solving is one of the key insights 

produced by Alan Bundy from the University of Edinburgh, and this paper uses it

as a foundational principle. The meta-language presented in this paper is 

incomplete due to research time constraints. The preliminary definitions and the 

contents of the appendixes, while not especially precise, provide a basis for 

thinking about equation solving using a formal meta-level language. The meta-

level language presented in this paper is adequate for initial purposes, but it 

should be improved in future research. 

Using this meta-language, the distinction has been made between the 

algorithmic attributes of a PPES and the resulting output attributes of a PPES. 

This distinction has been made because the algorithmic attributes of most PPES 

systems, either human or machine, are unavailable for inspection. Therefore, 

PPESs need both to conceptualized as “black box” input-output-systems and as 

algorithms. 

The study of algorithmic attributes presented in this paper covers some 

constraints on the types of algorithms that can solve equations. The method of 
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modeling PPESs as a rewrite-rule system with meta-level inference has also been

presented in order to leverage the existing research on PPESs and provide a 

tested format for performing proofs in future research. This paper has focused 

on the core effects that the strategies used in the PPES must accomplish in order

to be a working general equation solver that mimics human processes. These 

goals are: depth-reduction, collection and pre-collection. 

This paper has also provided a five-tiered framework for categorizing the 

structures and sub-structures that will be outputted when a PPES algorithm is 

applied to an equation that has a symbol variable identified as the unknown. 

These tiers can be used to create formal definitions for the basic meta-level 

functions and predicates that apply to these structures. These predicates and 

functions obtain potentially useful information for researchers and software 

developers. While these functions and predicates are not particularly 

sophisticated, they indicate what is possible for future development.

5.1.2 Implementing Measurement Programs

Using the above conceptual framework, this paper has presented a pilot 

experiment for measuring the algorithmic attributes of a PPES using its output 

attributes. A simple experimental framework for doing this by generating 

random equations and their solutions and then preforming statistical analysis on 

the results is presented in this paper. The main result from these experiments 

was the realization that the method for creating random equations used in this 

paper, referred to as the naive method, is inadequate for statistical modeling. 
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Due to this inadequacy, several suggestions have been made for improving the 

naive method. Despite these shortcomings, a couple of simple linear regression 

models have been given in order to demonstrate what is possible with this 

experimental framework.

Reasons have been given for the use of the MathPiper language in 

implementing the measurement of the output attributes of the Presston PPES. In 

addition to the fact that Presston is written in the MathPiper language, which 

allowed seamless integration of experiments with the solving code, MathPiper’s 

capabilities have been well suited to the experiments performed. The fact that 

MathPiper has mathematical expressions as a fundamental datatype aided in the 

manipulation of equations. In particular, MathPiper’s ability to use pattern 

matching to parse and search expression trees was helpful. This is in addition to 

its many visualization tools. Future researchers should consider the use of 

MathPiper when investigating PPESs.

A key insight provided by these experiments was the importance of 

engineering a method for generating random equations that creates the correct 

distributions of the numerical attributes of the generated equations. A method of 

generating random equations was tested and found inadequate. Certain 

numerical attributes of equations generated using the naive method were found 

to be heavily skewed and correlated with each other. These attributes might be 

useful to include in statistical models if their joint distribution were appropriate. 

Several suggestions for possible ways to improve the existing method have been 

made, although none have been attempted.
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This paper has presented a rudimentary experimental framework which 

consists of creating random equations and solving them with a PPES in order to 

obtain statistics that can be used to characterize that PPES. This framework has 

been used in the experiments performed for this paper by encoding it into a 

MathPiper worksheet. While this method of gaining information is simple, it still 

provides some insight about the PPES such as how many steps the algorithm is 

omitting. The simple linear regression models produced for this paper using this 

experimental framework demonstrated the possibility of creating statistical 

models to characterize PPESs that are not inspectable. More research would 

need to be performed to determine what other statistics could be of use.

5.2 Shortcomings

Since this paper is intended as an entry point into the area of human-like 

equation solving, the coverage has notable shortcomings. Some of these 

shortcomings are the result of the struggle to properly conceptualize an area 

that only has a small amount of relatively specialized research performed on it. 

The research included in this paper only gives a broad outline of the topics 

included because they are still being conceptualized. A more precise and 

detailed investigation into these topics would have to be made in order to be 

used in future research and practical applications. The statistical analysis in 

particular could have been better conceptualized. These shortcomings are 

considered in this section

This paper sought to communicate the necessity of a formal and symbolic 
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coverage of the meta-level aspects of equation solving. While there are the 

beginnings of a meta-language capable of expressing the complexities of 

equation solving, a complete meta-language has not been established. This was 

in part caused by the difficulty in identifying the requirements of such a 

language. The incompleteness of the meta-language made it difficult to create 

comprehensive formal definitions for many of the concepts presented in this 

paper. Also, the lack of a complete meta-language made proofs impossible, and 

proofs are necessary for future research and applications. This is a shortcoming 

that would require a more thorough consideration of the texts available on the 

subject.

In addition to not providing a high level of precision, this paper was not 

particularly comprehensive when covering the algorithmic attributes of PPESs. A

precise set of attributes was not reached in the process of researching this topic.

The precise nature of the algorithmic attributes would require a more rigorous 

and formal approach than the one that was presented in this paper. In particular, 

a more complete set of constraints was not identified. A more comprehensive list 

of possible categories of PPESs was also not identified. This is one of the most 

important aspects of this line of research.

Without a firm understanding of the relationship between algorithmic 

attributes and output attributes, inferential statistical models were difficult to 

create. This was compounded by the lack of knowledge related to random 

equation generation. Without a known way to create random equations with 

properly constrained numerical attributes, the statistical models that are 
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produced are not accurate. For this reason, the statistical models created in this 

paper were simplistic and not analyzed in depth. The primary reason for 

including these models was to demonstrate the avenues of research that are 

possible if an effective method of random equation generation is created.

5.3 Future Research

Since this paper was only intended to begin to conceptualize the areas of 

PPESs, there are numerous possible topics that can be researched in order to 

improve the understanding of PPESs. Of particular importance for future 

research will be a complete definition of a meta-language of algebra along with 

formal definitions and proofs. This would provide a common language that other 

researchers could use to build more precise and elaborate concepts and theories.

With a solid base provided by a focused meta-language, future researchers could 

then define more precise algorithmic attributes of PPESs. A knowledge of 

algorithmic attributes, combined with a better understanding of PPES output 

attributes, would likely allow the creation of better methods for inferring a 

PPES's algorithm from its outputs. This in turn, along with student modeling 

techniques, could hopefully be leveraged to create ITSs. 

The improvement of the formal meta-language that is used to describe PPESs 

is necessary to make progress in the research of PPESs. This includes 

establishing a more rigorous standard for the meta-language and defining rules 

of formation for the object-language using the meta-language. With this 

improved language, better definitions can be made. Once the meta-language is 
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better formalized, proper proofs can be made about PPESs.

After a more formal system for describing PPESs has been defined, research 

into categorizing the different types of PPES algorithms can be conducted. This 

will then allow research into practical applications. This research could leverage 

the research that has been done on rewrite rule systems to identify the possible 

constraints that all PPESs must follow. Research into the meta-level effects of 

traditional strategies for solving equations may also provide more insights into 

the constraints and possibilities of PPESs. These traditional strategies include 

collecting like terms, obtaining common denominators and factoring 

polynomials. Analyzing the outputs of PPES software, even if it is closed source, 

or interviewing mathematicians may also provide insights into the strategies that

can be used to solve equations by challenging the researchers to use describe 

these strategies using the meta-language. 

In addition to researching the algorithmic attributes of PPESs, the nature 

of the output attributes can also be researched in more depth. It is possible that 

the research into the algorithmic attributes of PPESs could inspire the creation 

of more meta-level functions and predicates at the first four tiers of output 

structures. Of particular importance to practical applications would be the 

continued research into methods of creating useful multi-solution analysis 

algorithms. This could initially take the form of improved statistical methods, in 

particular the creation of adequate random equation generation methods. More 

insightful statistical models could also be pursued. Further research could also 

be carried out to use pattern recognition to identify strategies that are being 
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used by a PPES. A long term goal of research may be to create a system that can 

use the properties discovered about algorithmic attributes to efficiently query a 

PPES to infer its algorithmic attributes. It can be seen that there are many 

avenues available for future research which would likely lead to practical, 

perhaps even revolutionary, improvements to the teaching of equation solving.
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6 Appendices

6.1 Appendix A: Meta-Level Languages and Object-Level Languages

In order to understand PRESS, Presston and the conceptual framework that is

proposed in this paper, an understanding of the distinction and relationship 

between a meta-level language and its corresponding object-level language is 

required. While this knowledge is not particularly complicated, it is not well 

known outside of certain specialized fields of study. As will be shown, the use of 

meta-level language/object-level language pairs are present in both natural 

languages, such as English, and formal languages, such as mathematics. 

However, these occurrences are almost always informal. This is adequate for 

most purposes but must be formalized for use in applications like PRESS, 

Presston and the conceptual framework in this paper.

6.1.1 Formal Languages

In order to make precise statements about some specific area of interest, 

specialized languages, called formal languages, have been invented. These 

languages sacrifice the flexibility of natural languages, such as English or 

French, for the precision of the languages found in logic, mathematics and 

programming. A formal language contains a set of symbols such as "5" , "+ "  

and " = " that may or may not have meanings associated with them. By 

combining these symbols together into “strings” of s.ymbols, expressions can be 

made. Formal languages have precise rules for what is considered an acceptable 

expression in the language and what is not. The rules that state what is an 



 80/98

expression in a language are called formation rules, and expressions that follow 

these rules are called well-formed formula (WFF, pronounced “woof”) [Sowa 

2000 p.470]. For example "1+1=2" is a WFF of algebra while "1 + + =2=3" is 

not. 

6.1.2 Languages to Talk About Languages

A formal language that most people are familiar with is the language of 

algebra. This language is designed to make precise statements about real 

numbers. The symbols used in algebra refer to numbers, operations on those 

numbers and relationships between those numbers (note that this is a simplified 

coverage of this language). The expressions in this formal language allows 

unambiguous statements to be made about numbers. 

However, when actually doing mathematics, we may wish to make statements

about the expressions that are being dealt with in algebra, but algebra only 

makes statements about numbers. For example, we cannot say that the 

expression "(4+2)+5 " is a sum with the language of algebra. The property of 

being a sum cannot be applied to a number, and (4+2)+5 is a number, namely 

the number 11 . We cannot say that (4+2)+5 is a sum in the language of 

algebra without conceding that the number 11 is also a sum, since they are 

equal. We are thus making a distinction between the arrangement of symbols 

used in in expression, usually called the expression's syntax, and the meaning of 

that expression, usually called the expression's semantics.
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6.1.3 Meta-Languages

Usually we would just use English, or some other natural language, to make 

statements about algebra. However, if we wish to say something more precise 

and complex about a given formal language, a second formal language is 

invented. The formal language that is being talked about is called the "object-

language". The formal language that talks about the object-language is called the

"meta-language". The meta-language therefore is above and dependent on the 

object-language. It does not make sense to talk about a meta-language without 

having an object-language.

Terms such as “sum”, “polynomial”, “equation”, “solved equation”, 

“coefficient” and so on are part of the meta-language of algebra. The following 

terms are necessary to understand the use of meta-level statements made in this 

paper.

• Object-Level Domain of Discourse

• Object-Level Constants and Variables

• Meta-Level Domain of Discourse 

• Meta-Level Constants and Variables

• Object-Level Predicates and Relations

• Meta-Level Predicates and Relations

• Expressions

6.1.3.1 Object-Level Domain of Discourse

The domain of discourse, also known as the universal set, for the object-level 

of algebra is the set of real-numbers. This will be denoted ℝ .
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6.1.3.2 Object-Level Sentences

The object-Level sentences of algebra consist of an extension of second-order 

logic and thus may contain logical symbols such as "¬ " , " ∧ " , " ∨ " , "⇒" ,

"⇔" , "∀ " and "∃" . Relational symbols are also in the object language such 

as " ∈ " and " = " . It also contains the numerals "1" , ”2” , "3" , ”4” ,

“5” , “6” , “7” , “8” , “9”  and “0” . The operator symbols are also 

included such as "+ " , "− " , "⋅" , "ln " , "sin " , "cos " , etc. For this paper, 

all letters that are lower case will be variable symbols and constant symbols of 

the object language. These symbols together will constitute the set of symbols 

for the object-language. This set, which is at the meta-level, will be called L0 .

6.1.3.3 Meta-Level Domain of Discourse

The meta-level domain of discourse, or the meta-level universal set, consists 

of both the symbols from the object language, L0 , and the set of real numbers,

ℝ . This set is therefore L0∪ℝ . When referring to the symbols or arrangement

of symbols into expressions, double quotes will be used.

6.1.3.4 Meta-Level Sentences

Sentences of meta-level algebra can express everything that can be expressed

using the object language, with the exception that constants, variables and 

functions of the meta-level appear in uppercase in this paper. However, the meta-

level can also make statements about the object-level’s sentences and parts of 

those sentences. When using the meta-level statements about the object-level, 

the object-level sentence or expression will appear in in quotes. Therefore, 
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saying that ‘ “ (1+x )+4 ” is a sum’ is a statement at the meta-level but the 

statement that x+1=5⋅x is a statement at the object-level. The first is a 

statement about an expression and the second is a statement about the number

x . 

Two object-level expressions are equal at the meta-level if they have the same

symbols in the same order. Therefore, "1+x" = "1+x " but "1+x" ≠ "(1+x )" . A 

meta-level operator called concat denoted '⊕ ' takes two strings of symbols and 

outputs a single string of symbols that is the consecutive combination of the 

original symbols. Concat is associative but NOT commutative. For example,

("(x+3)")⊕("+5")= "(x+3)+5" and ("+5")⊕("(x+3)")= " +5 (x+3)" . The concat 

operator will often be omitted for brevity along with meta-level parentheses. This

means that sentence such as ‘ (X⊕("="))⊕S is an equation’ will normally be 

written as ‘ X "="S is an equation’ since they are easier to read. The concat 

operator has been introduced simply to allow the reader to realize that there is 

an operation being performed, even if it is not explicitly being written. Note this 

convention for the concat operator is much like the convention used for omitting 

multiplication signs such as in 5 x2 . This paper will not always be highly formal 

and symbolic, usually resorting to English, in order to maintain the ease of 

readability.

Single symbols from the object language of algebra can be placed into sets:

1. The set of numerals: NUMERALS={"1" ,"2" ,"3" ,"4 " ," 5" ,"6 " ,"7 " ," 8" ," 9" ," 0"}

2. The set of operator symbols: OPERATORS={"+ " ,"- " ,"⋅" ," ÷ " ," ^ "}
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3. The set of relation symbols: RELATIONS={" ∧ " ," ∨ " ,"¬ " ," ⇒ " ,"⇔"}

An important aspect of expressions, which will form the foundation of WFFs 

and expression trees, is the concept of an “atomic expression”. An atomic 

expression is one or more consecutive symbols, possibly in a larger expression, 

meant to be considered as part of a whole. For example, the expression "sin "

contains three symbols, but is meant to be read as a single expression. The 

following consecutive symbols are atoms:

1. Any consecutive collection of symbols that contain numerals and at most 

one decimal point is an atom.

2. Any consecutive collection of symbols that contain lower case letters is an 

atom.

3. All of the symbols in the single symbol sets are atoms.

Several predicates and corresponding sets are introduced:

1. The NUMBER predicate returns true if a string of symbols that is a number

atom is inputted.

2. The OPERATOR predicate returns true when an operator symbol is 

inputted.

3. The RELATION predicate returns true when a relation symbol is inputted.

6.2 Appendix B: The Language of Expression Trees

The conceptual framework in this paper makes heavy use of the language of 

expression trees. The language of expression trees is an extension of the meta-
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language using graph theory that allows the visualization of the structure 

inherent to all well formed expressions of the object language. More importantly,

it contains concepts that are essential for understanding PRESS, Presston and all

other PPESs. The language of expression trees explicitly shows the composition 

of functions and operations along with the constants and variables that are the 

first inputs to these functions and operations. This is done by using tree graphs 

from graph theory. These graphs are technically directional. However as will be 

shown, the directional nature of these arcs is omitted and is instead indicated 

using vertical “levels”. Note that the equals sign, along with all other predicates 

and relations, is considered an operation in expression trees.

Figure 17: Expression Tree

Expression trees consist of “nodes” connected by “arcs”. Each node is a 

symbol representing a function. operation, constant or variable of the object 

language. Note that these symbols are constants of the meta language. In the 
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following diagram, all of the tree's nodes are highlighted.

Figure 18: Nodes

The arcs indicate which functions, operations, constants and variables are 

inputs to a given function or operation. As will be shown, the vertical and 

horizontal positioning of the symbols indicate the interpretation of each arc 

between two symbols. In the following diagram, all of the tree's arcs are 

highlighted.
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 Figure 19: Arcs

The node at the top of a tree is called its “root” node.

 Figure 20: Root Node

The nodes that are connected immediately below a given node by arcs are its 

“child” nodes. The “children” of a node are the inputs to that node. The left-most 

child of a node is that node’s first input, the next child to the right is its second 
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input and so on. In the following diagram, the root node has two children, and it 

is the “parent” node of these children. Children nodes of the same parent node 

are called “sibling” nodes.

Figure 21: Child Nodes

Nodes that don't have any children are called “leaf” nodes. Leaf nodes will 

always be variables or constants of the object language because they do not have

inputs. 
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 Figure 22: Leaf Nodes

Each node below the root node in a tree is located at a specific “position” in 

the tree which is determined by the arcs that need to be followed from the root 

node to arrive at it. Each arc that connects a parent node with is children is 

labeled with a number. The leftmost child is labeled 1 , the sibling to its 

immediate right is labeled 2 , and so on. The following diagram shows the tree 

with all of its positions indicated.
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Figure 23: Node Positions

The children, children of children, etc. of a given node are called its 

“decedents”. A node along with all of its descendants and the arcs between them 

form a “subtree”. The topmost node in a subtree is the “dominate” node, and all 

of its descendants and arcs between them are said to be “dominated” by the 

dominant node. In the following diagram, the subtree that has the node "−" as 

its dominant node is highlighted.
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Figure 24: Dominant Node

The position of node "b" is [1 2] . A sequence of arcs and nodes is called a 

“path”, and a path that goes from the root node to a leaf node is called a 

”branch”. The following diagram shows the branch from the root node to node

"b" .
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Figure 25: Node Position

The position of node "−" is [2 2] . The following diagram shows the path 

from the root node to node "−" .

 Figure 26: Node Position

The “length” of a path is the number of arcs it contains. For example, the 
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length of the path between node "a" and node "d " is 5.

 Figure 27: Path Length

The length of a path from the root node to a given node is called the “depth” 

of the node, and the length of the path from a node to the farthest leaf it 

dominates is called its “height”. The following diagram shows the depths of all 

the nodes in the tree.
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 Figure 28: Depths

6.3 Appendix C: Pattern Matching and Rewrite Rules

The patterns used in pattern matching are part of the meta-language, and 

they are used for creating predicates that can be applied to expression trees. The

following are simplified patterns:

• M _  " + "N _

• "1" "⋅"M _

• M _ INTEGER "⋅" "("N _ " + "K _ ")"

The variables followed by underscores are called “pattern variables”. A 

pattern is “used” on a tree, and that tree will either match the pattern or not. 

The tree matches the pattern if there exists expressions that can be substituted 

for each of the variables that makes the pattern equal to the expression tree 

being matched.

For example the expression "1+3" matches the pattern M _  " + "N _ because
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when M _ is replaced by "1" and N _ is replaced by "3" the pattern with 

these substitutions is equal to the expression tree of "1+3" . The INTEGER

meta-level predicate attached to the M _ in the pattern

M _ INTEGER "⋅" "("N _ " + "K _ ")" indicates that the only type of expression that 

the pattern variable can be matched to is an integer literal. This means that the 

expression "1⋅(4+3)" will match to the pattern M _ INTEGER "⋅" "("N _ " + "K _ ")" ,

but the expression "(1+3)⋅(4+3)" will not match. Pattern matching consists of 

taking a pattern and finding all of the locations in a tree that match it.

Rewrite rules are used by meta-level functions to rewrite expressions. 

Rewrite rules use pattern matching to determine if an expression should be 

rewritten. The tree is “searched” by the function, and the first position in the 

tree to match the pattern is rewritten. For example, the rewrite rule

"1" "⋅"M _→M _ would take the expression "1⋅(5+2)" and return "5+2" .
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