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Chapter 1
Introduction and Background Information

The task of finding functions which are continuous but nowhere differentiable has
mystified and challenged mathematicians for the past three centuries. Bernard Bolzano is
believed to have constructed the first example of a continuous nowhere differentiable
function on aninterval in 1830. Since then, several other mathematicians have
constructed continuous functions which are nowhere differentiable on the entire set of real
numbers or on a dense subset of the real numbers. In this paper, | will examine the work of
Hermann Schwarz, Isaac Schoenberg, and Walter Rudin in this field. | will present and
explain their original constructions and proofs of continuous functions which are nowhere
differentiable or non-differentiable on a dense subset of their domains, and then present a
generalization of their functions and proofs. Throughout this paper, we utilize the following
notation:

N represents the Natural Numbers
R represents the Real Numbers

In order to construct these functions and prove their continuity and non-differentiability,
we need a working definition of pointwise convergence and uniform convergence for a
sequence of functions, and uniform convergence of a series of functions. We also need to
utilize several theorems about the convergence of sequences/series of functions, namely:

1. The Cauchy criterion for uniform convergence of a sequence of functions

2. Theorem: If {f,,} is a sequence of continuous functions on E, and f,, converges
uniformly to f on E, then f is a continuous function on E.

3. Theorem: The Weierstrass M-Test

4. Lemma:leta<a, <x<b, <b foralln €N, andleta,, = xandb, — x.
If f:[a, b] >R is a continuous function and f’(x) exists, then
. fbn)—f(an) _ .
lim K] = 1 (x)
In the following pages, | will provide the definitions and examples of pointwise convergence
and uniform convergence for a sequence of functions, the definition of uniform
convergence of a series of functions, and proofs of the above 4 theorems and lemmas. The

sources | used for these definitions and proofs are:

e Rudin, W. (1976). Principles of Mathematical Analysis, Third Edition. New York,
McGraw-Hill, Inc.



e Thim, J. (2003). Continuous Nowhere Differentiable Functions (2003:320 CIV).
[Master’s Thesis, Lulea University of Technology].

e Whitaker, John. Shawnee State University, 2022, Mathematical Analysis Il, You Tube,
https://www.youtube.com/watch?v=s2c44HEPiTc&t=9s.

l. Pointwise convergent sequence of functions

Definition:

Suppose {f, } is a sequence of functions defined on a set E. And suppose that the
sequence of numbers {f,, (x)};—, converges for any x in E. Then we define

f(xX) = limy 00 fr(X)

and we say that {f;,} converges pointwise to the function f onE.

In other words, a sequence of functions converges to the function f pointwise on E
if for every x in E and forany € > 0, thereis an N €N such that forany n > N,

/() = fO)] < e

In pointwise convergence, N depends on one’s choice of € and x.

Example:

The sequence {f,, (x)} = {x"} for x € (0,1) is a geometric sequence with |x| < 1. Therefore,

it converges to 0.

1 1 1\ 1
For example, choose ¢ = m and x0=5. Then forn = 4, |(E) — 0| < o

Il. Uniformly convergent sequence of functions

Definition: We say that the sequence of functions {f;, };--, converges uniformlyon Eto a
function f if foreach ¢ > 0, there is an integer N such thatforanyn > N,

|fn(x) — f(x)| < e forallx € E. Ifa sequence converges uniformly, N does not depend on

the value of x.

Example:

fn(x) = x™ converges uniformly to 0 on the interval [0, %]


https://www.youtube.com/watch?v=s2c44HEPiTc&t=9s

Proof:
Let € > 0 be given. We need N€ N such that forany n> N, |f,(x) — 0| < ¢, forallx € [0, %]

Sowe need [x™ — 0] < &. Sowe need x" < ¢.

. 1 1\" 1n\"
Now, since x € [O,E],then x" < (5) . So we want (5) <e.

Solving this inequality using natural logs, we get:
In(e
nz= —(1)
ln(f)

Since N is not bounded above, there is an NEAN such that N > n(e)

In (%)

Soforanyn=N,|x" —0| < &, forallx € [0,%].

lll. Theorem: The Cauchy Criterion for Uniform Convergence

The sequence of functions {f,, (x)};, defined on E converges uniformly on E if and only if
foranye > 0,thereis an N €N such that for anyn,m = N,
lfn(xX) — fn(xX)| < eforallx €E.

Proof-:
Suppose {f,,(x)};=; converges uniformly on E to f(x). Let € > 0 be given.

Then there is an NEWN such that |f,(x) — f(x)| < g,for anyn=> N andall x € E.

Thus, foranyn,m = N and for all x € E, and applying the triangle inequality,
/o () = fn GO = 1fu(x) = f(x) + f () = fin )| < |fn () = FCOI + I (x) = fn (O] < % + % =€

Proofe:

Suppose that for any € > 0, there is an N € W such that foranyn,m > N,
|fo(X) — fin(x)| < & forallx € E.

Then foreach x € E, {f,,(x)}-, forms a Cauchy sequence which convergesin R .

Define f(x) = lim f,(x). We want to show that {f;,,} converges uniformly to f.
n—-oo

Let e > 0 be given.

To show uniform convergence, we need an NE N such that forany n> N and for all x € E,

/() = f)| < .



By the assumption for <, we know that thereisan N € N such that foranyn,m > N,

then |f,(x) — f(x)| < eforallx € E.

Fixn = N. Consider lim |f,(x) — fn (X)|
m—oo

Claim: lim |f,(x) — fn ()| = |f,(x) — f(x)| forall x € E.
m—-oo
This is equivalent to saying:
Foragivend > 0, thereis a K €N suchthat for any m = K,

1fs(0) = fin O] = fu@) = FOI| < 8 for all x € E.

Proof of claim:

Let$§ > 0 be given.We need K €N such that for anym = K,
1fsG0) = fin Ol = fu@) = FOI| < 8 for all x € E.

It can be shown:

[1/() = fn GO = 1/ (6) = FOOI| S 1/ () = fin () = (Fo () = O = 1fn () = F ()
Since {f,,(x)} is Cauchy, {f,,(x)} converges to f (x) foreach x € E.
So there is a K, € N such that for anym = K,, |fp,(x) — f(x)| < 6§

Thus, we have proven the claim that lim |f,,(x) — fn(X)| = |f(x) — f(x)| < 6 for x € E.
m—oo

Now since |f,,(x) — f,(x)| < e foranyn,m = N and for all x € E,

then. lim |£, (2) ~ fu ()] < 2.
Note that for all x, that limit is the same, i.e., nlli_?;tolfn ) — (O] = 1f(x) — f(x)| as
shown in the proof of the claim.

Thus |f,(x) — f(x)| < e foranyn = N and forall x € E.

Thus {f,,(x)} converges uniformly on E.

IV. Theorem: If {f,,} is a sequence of continuous functions on E, and f, converges

uniformly to f on E, then f is a continuous function on E.

Proof:
Letx, € E.

Let {f;,} be a sequence of continuous functions on E which converge uniformly to f on E.



Because f,, converges uniformly, we can say:

Forany e > 0, thereisan N €N such thatforanyn >N,
Ifn(x) = f(x)] < gfor allx € E.

Because f,, is continuous, we can say:
Foranye > 0, thereisa § > 0 such that
|x —x,| < & impliesthat |f,(x) — f,,(x,)] < §
Lete > 0 begiven. Letxe E. LetneN withn> N. Let|x —x,| < . Then
1f (G0 = f o)l = 1f () = fu() + fu(x) — fru(x6) + fn(x0) — £ (%)

< 1FCO) = fall+ () = il + (o) = f(x0)]
S cHot+o=e

Since |f(x) — f(x,)| < e whenever |[x — x,| < § ,then f is continuous at x,,.

Since our choice of x, was arbitrary, f is continuous on E.

V. Uniformly Convergent Series of Functions
Before we give the statement and proof of the Weierstrass-M Test, we give a preparatory
definition of Uniformly Convergent Series of Functions:
Definition:
Let {f,,} n=, be a sequence of functions defined on E.
We say that };;_; f, converges uniformly on E iff

>, fi}o=, converges uniformly on E.

VI. Theorem: Weierstrass-M Test
Suppose {f,,} is a sequence of functions defined on E, and suppose
()| <M, (x€E, n€eN).

Then ). f,, converges uniformly on E if ), M,, converges.

Proof:
Let {f;,} be a sequence of functions defined on E.

Suppose |f,(x)| < M, (x € E, n €N), and suppose Y, M,, converges.



Let € > 0 be given.

Since ), M,, converges, there is an NEN suchthatform>n >N, Y M; < ¢
Cauchy Criterion for convergent series

Since |f,(X)| < My, then [XIL,, fi ()| < XL, lf; (0] < XL, M;

Let S, (%) = Xi-, fi(x)
Foranym =n =N, [Sp(x) = Sn()| = X2, fi(x) — Xizq fi(2)]
= X1 fi(0)]
< XiZns (0]
< X lfi (Ol
<Uith M; < €
Soforanym >n > N, andforanyx € E, |S,(x) —S,(x)| <e&

So by the Cauchy Criterion for Uniform Convergence,
{S,)2, = {Z?_lfi(x)}oo _ converges uniformly.
= ne

Therefore, the series Y51 fn(x) converges uniformly. (See definition above)

Vil. Lemma: Leta<a, <x<b, <b foralln €N, and leta,, - x and b,, - x.

If f:[a, b] >R is a continuous function and f’(x) exists, then

= b - )
lim f(bp)—f(ay) — f (x)
n—-o by,—ay
Proof:
bp— bp— - bn—
Note that n=X n=n _ 4 and X~ %n 1
bp—an bp—an bp—an bp—an

Now we can estimate |W - f’(x)| by expressing it as the sum of two differences,
and multiplying each difference by the fraction of the total interval, |b,, — a,|, which it

represents. So,

f(bn)_f(an) _ fr(x)| —

bp—an



f(bn) — f()_f()> X —an (f(an) f(x) f())’
b

bn—an( b, —x n — Qn a, —x

= bl:l—_;n f(b;l) () —f(x )| ;Cn__a:n : f(a;,)t:fc(x) — f’(x)] since allfactors are positive
< |f(bn) f(x) fl(x)| + |f(a‘:l)_£(x) _ f;(x)| since bbn— <1and X—an <1
n— n—an n—an
Note: lim |M —f’(x)| =0
n—oo bn—x
and lim W - f’(x)| = (0 by the Sequential Criterion for Function Limits
n—-oo n—
n—oo bn—x an—x
Therefore, lim |M f’ (x)| Substituting in a positive lesser value

n—->oo

Therefore, lim Zn=/(@n) f'(x)

n—-oo n—an
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Chapter 2
Schwarz’ Function: Original Proof and Generalization

Hermann Schwarz, a German mathematician and student of Karl Weierstrass, published
his proof of a continuous function which is non-differentiable on a dense subset of the real
numbers in 1873. The proof is given below.

Theorem: The Schwarz function S: (0, M) —» R defined by
k
S(x)=3¥7, o2 x), where p(x) = [x] ++/x — [x], [x]=the greatestinteger < x,

4k
is continuous and non-differentiable on a dense subset of (0, M), withM > 0and M € R.

Proof:

rp(Z"x)_

I.LetS,(x) = I

Prove that {S;(x)} is a sequence of continuous functions on (0, M):

First we examine the continuity of @(x) = [x] + m

This is the sum of the greatest integer function and the composition of the square root
function with the function f(x) = x — [x].

The square root function and y = x are continuous for all values of x € (0, M).

Also, the greatest integer function is continuous for all x, except possibly when x €N.

So ¢(x) will be continuous for all x, except possibly when x €N, as itis the sum and
composition of continuous functions.

So the only possible discontinuities for the function ¢ (x) might occur when x €N. So we
will investigate this case:

Letp € N. We need to investigate right and left limits of ¢(x) as x — p.

lim 9G) = lim (Ix]+Vx =) =p+p-p=p
lime@) = lim ([x] +yx—Tx]) = - D+p-p-D=p-D1=p
Since xl—if;?*r p(x) = xl_igl_(p(x) = p, then @(x) is continuous on (0, ).

Now (p(Z"x) is the composition of continuous functions, so it is continuous.

2kx) . . . . - .
So Sk (x) = % is the quotient of continuous functions, so it is continuous.

Therefore, {S; (x)} is a sequence of continuous functions on (0, ).
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Therefore, {S; (x)} is a sequence of continuous functions on (0, M).

Furthermore, ¢(p) =p forallp € N.

Il. Prove that the series converges uniformly.
Letx e R, x € (0, M).
Then x can be writtenasx = p + h,where h € R, h € (0,1) andp € {NVN U {0}}

Thengp(®@ +h) =[p+hl+(p+h)—[p+h]

=p+J@+h)—p
=p++h

Now define q(h) = ¢(p +h) — (p + h)
Soqh)=p + Vi—p—h=vh—h=(h):—h

1
~ 2vh

We set g'(h) = 0 to find critical points of g(h):
1
"

Soq'(h) =3 (h)z -1 1

1

Solving T

—1=0, wegeth =
Nextwe find " (h) = —3 (h)= .
Now q" G) < 0. Sowhenh = % , q(h) is concave down. Therefore, q(h) reaches its

. 1
maximum value ath = -

Soq(h) < q(i). Notethatq(i)=\/%_% - %

Sop(p+h)—(p+h)<q (i) Substitute @(p + h) — (p + h) for q(h) as defined above

So<p(p+h)£(p+h)+q(i).

1
So +h)<(@+h)+- Substitute in ~ for g (+) as derived above
o(p p : 2 foral;
1
So xX)<x+- Substitute in x for p + h as defined above
4 4
. 2kx
Now consider |(p(4k ) :
2Ky 2kx
|<p(4k ) = <p(4k ) sincep >0,x >0




12

2 x+% 1

< 2 since@(x) < x + (fromabove)
x 1

Y] + ak+1
M 1 )

<2—k +4k+1 sincex <M

o(2kx) M 1
So foralln, | w: < oK +4k+1

1

So each term in the sequence {S; (x)} is bounded above by zﬂk +

Now 3%, —+—

&t is the sum of 2 geometric series with r < 1, and so it converges.

9 (2%x)

Then by the Weierstrass-M Test, Y., L converges uniformly to S(x).

k (o]
Define {f,,} = { [ (p(jkx)}nzl to be the sequence of partial sums of S(x).

Then {f,,} converges uniformly on (0, M) to S(x), since the corresponding series converges
uniformly to S(x).
Also, each f,,(x) is the sum of continuous functions, so it is continuous.

Therefore, since {f,,(x)} is a sequence of continuous functions on (0, M) which

converges uniformly to S(x), we can conclude that S(x) is continuous on (0, M).

(See theorem 1V in Background Information)

I1l. Show that S is not differentiable on a dense subset of (0, M):
Let x,and x; € (0, M).Without loss of generality,let x, < x;.

We want to show that thereisan x (x, < x < x;), such that S'(x) does not exist.

Proof:

Let x be a dyadic rational number such that x, < x < x;.

Letxzi j X 27™ for some j,m € N. Let0< h<——
.] .] 2m

Zm:

Consider 3&+M=S® _ e @ (2™ (x+h)) - (2™x)
h 4nh

S 2T )90
amp

since each term in the series is non-negative, the series = one term
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From how we defined j and h above, we can derive:

2Mx =jforjeN and2M™h <1

Therefore, [2™x + 2™h] = [2Mx]=]j

So ¢(2m(x + h)) — p(2™x) =
=@ (2™x + 2™h) —p(2™x)
= [2™x 4+ 2™h] + \/(2™x + 2™mh) — [2™x + 2mh] —[2™x] —/2mx — [27x]
=j+\i+2"h—] —j == =VZh

_ m (oM
Now S(x+h) S(x)><p(2 (x+h))-@(2™x)

h = 4mp
2Mh LIRS
T ogamp T omyom T R
. Sx+h)-S(x) . 1 1
Solim————== > lim (— x—) = 00
h=0 h ~ ho0 \2™V2™ " Vh

Therefore, S’ (x)does not exist,and S is non-differentiable on a dense subset of (0,M).

Note: The above proof was adapted from the proof found in the following document: Thim, J. (2003). Continuous
Nowhere Differentiable Functions (2003:320 CIV). [Master’s Thesis, Lulea University of Technology]. | have expanded the
proof to provide more in-depth proofs of several steps.

Generalized Schwarz’ Proof
| have generalized the Schwarz function and have proven that the generalized function is

continuous and non-differentiable on a dense subset of the real numbers, as explained below.

Theorem (generalized): The generalized Schwarz function S: (0, M) —» R defined by

k
S(x) = X0 (p(ka), where p(x) = [x] + \Vx — [x], [x]isthe greatest integer < x,

AER, DER, b>a>1,neN, n=>2

is continuous and non-differentiable on a dense subset of (0, M), withM > 0and M € R.

Changes from original proof:
k k
« Indefinition of S(x), change ¢(:kx) to "’(Zk’“);
e Indefinition of @ (x), change [x] + x — [x]to [x]+ Yx —[x]; newN; n=2

_J _ 1 1
* Inpartlllof proof,change x =& tox =m and change 0< h < om tO 0< h < prol

AER, DER; b>a>1



14

Proof:
o(akx)

I.Let S (x) = ok Prove that {S;(x)} is a sequence of continuous functions on (0, M):

. 1. . .
Since Pl continuous, we need only to examine the numerator:
@ (akx) = [a*x] + Y akx — [a*x]

Considerg(t) = [t] + Y/t —[t]; teER

Now since the greatest integer function is continuous for all t, except possibly when t €N,
@(t) will be continuous for all t, except possibly when t €N.

So the only possible discontinuities for the function ¢(t) might occur when t €N. So we
will investigate this case:

Let p € N. We need to investigate right and left limits of ¢(t) ast — p.
g$¢@>=gm(m+ t—UD=p+Jp—p=p
lime@®) = lim ([]+ Ve=Td) = G- D+Vp- (- D =@~ D+VI=p
Since tli@ p(t) = tlim_(p(t) = p, then ¢(t) is continuous on (0, ) for all t.
-p -p

Now (p(akx) is the sum and composition of continuous functions, so it is continuous on (0, 0)

¢ (akx)
bk

Also S (x) = is the quotient of continuous functions, so it is continuous on (0,00)
Therefore, {S, (x)} is a sequence of continuous functions on (0, ).
Therefore, {S, (x)} is a sequence of continuous functions on (0, M).

Furthermore, @ (p) =p forallp € N.

Il. Prove that the series converges uniformly.
Letx e R, x € (0, M).
Then x can be writtenasx = p+ h,where h e R, h € (0,1) andp € {V U {0}}
Then(p +h) = [p+hl+/(p +h) — [p + h]
=p+ Y@+ -p
=p+ Vh
Now define q(h) = ¢(p+ h) — (p + h)

Soqh)=p + YA —p—h=YR—h=(h)n—h
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Soq'(h) = (W) —1

We set q'(h) = 0 to find critical points of g(h):
Solving %(h)(%_l) —-1=0:
Ln)&E) =
HOLPES

(&) =n
In(h)&™ = In(n)

(5=1)in (h) = In(n)

ln(h)= In(n) _ mnin(n)

I, 7 1-n
n
(n-ln(n)) (—n-ln(n))
So h=e\ 1-n/ =e\ n-1 J jsacritical point

Next we find g"(h) = (i— 1) % nG-2) = (1_—") (h(%‘z))

n2

1

—n-ln(n) _ —ntneoyy (5 —2)
So q"(e( nnilln )) = (171—271) ((6( nn:lln )> " ) This is negative since (1—271) < 0ande* > 0 for all x.

n

(—n-ln(n)) (—n-ln(n))
Sowhenh = e\ n-1 J q(h)is concave down. Therefore, q(h) reaches its maximum value ath = e\ n-1

Soq(h) < q (e('”ﬂf”)) )

Now q(h) =¢@(p+ h) — (p + h) from above

-n-ln(n)

So (p(p + h) - (p + h-) <q (6’( n-1 )> Substitution

Sop(p+h) < (p+h)+q (J”ﬂfm) )

(—n-ln(n))
Now we evaluate g (e n-1 ) :
(—n-ln(n)) (—n-ln(n)) 1 (—n-ln(n))
qle\ n1 =(e\ n1 n— (8 n-1 ) from our definition of q(h) above

(i) — 55
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—-n-ln(n)

Recall, p(p+h)<(p+h)+q (e( n-1 ) ) from above

—ln(m) n-ln(n) e
So <.0(p + h) = (p + h’) + e(ﬁ) - e( n-1 ) Substitute in for g (e( nl—1( )))

Recallthatx =p +h

In(n) n-n(n) _In(n _nln(n n(n nin(n
So (p(x) <x+ e( n-1 ) - e( n-1 ) Note that e( =y e( = ))> 0,since e( 711—(1)) >e( = )

(—ln(n)
Also, e\ n—

—In(n) -n-in(n)
1)<1forn>1.So 0<e( nn—f)—e( nn—nln)<1

( ln(n)) (—n-ln(n))
So qo(a x) < (a x) +e\n-1/ —e\ n-1 Substitute a*x for x in above

—In(n ) (—n-ln(n ))
—e

k kx) + ( n—1 n—1
So @(ka) < (atx) +e ; Since b* is positive, we can divide each side by b¥
X X (—ln(;l)) (—n-lnl(n)) k
+ n— _ n—
So |—(p(akx) | < (afx)*e - c Since (p(akx) >0
b b b

M) (—n-ln(n))
—e

a k g( n—1 n—1
- (@ D

_
a e\ n—1/ —e\ n-1
< (3) M+ bk

since x < M

So for all k, |(p(a *)

k —In(n) —n-ln(n)
< (%) M+b—1k(e( wi) — e )>= M;,

k in(n) n-ln(n)
So each term of {Sy(x)} = { pla” )}ls bounded above by M;, = (%) M +b1—k(e( n-1 ) - e( n-1 )>

k —In(n —n-ln(n
Now consider };7-q My, =Z,;‘°=O{ (E) M +%(e( ri—(l)) - e( nl_l( )))}

b
k —In(n) —n-ln(n)
_ oo a &) 1 —_— —_—
3 (3 e () — )
k
a 1
< Yreo (Z) M+, or D See above for explanation of substitution made

This is the sum of 2 geometric series, each withr < 1, so it converges.

Therefore, }.;-, M) converges.

w(")

Therefore, Y=o converges uniformly on (0,M) to S(x) by the Weierstrass-M Test.
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. i qo(akx) « .
Define {f;} = {Zk:1 % } . to be the sequence of partial sums of S(x).
i=

Then {f;} converges uniformly on (0,M) to S(x), since the corresponding series converges
uniformly on (0,M) to S(x).
Also, each f;(x) is the sum of continuous functions, it is also continuous.

Therefore, since {f;(x)} is a sequence of continuous functions on (0, M) which

converges uniformly to S(x), we can conclude that S(x) is continuous on (0, M).

(See theorem 1V in Background Information)

I1l. Show that S is not differentiable on a dense subset of (0, M):
Let x, and x; € (0,M).Without loss of generality,let x, < x;

We want to show that thereisan x (x, < x < x;), such that S’(x) does not exist.

Proof:
Letm eWN.

Thensincex; > x,, a™x; > a™x, Since a is positive

1

X1=Xo

Since a > 1,thereisam €N, such that a™ >
Soa™(x; —x,)>1

Soa™x; —amx, > 1

Therefore, there is some integer j such thata™x, < j < a™x;

Therefore, — <

a™x j a™x
am" L2 Dividing each term by a™

am™m am™m

Therefore x, < .

am

< X Simplifying

Now fix x = a]—m suchthatx, < x < xyandj,m €AN. (Wehavejustshown that such an x exists.)

Sox=j-a ™ Fixhsuchthat0<h<aim and he R

Considerw: >, ¢(a (x+:221—¢(a x)

S olam ) -0
b™h

since each term in the series is non-negative, the series > one term

From how we defined j and h above, we can derive:

a™x =jforj€eN anda™h <1
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Therefore, [a™x + a™h] = [a™x]=]

Sog(a™(x + h)) — p(a™x) =
= ¢ (a™x +a™h) — p(a™x)
= [a™x + a™h] + 7{/(amx + a™mh) — [a™x + amh] —[a™x] =%/ a™x — [a™x]

=j+%j+arh—j—j —[j—j=Vamh

S(x+h)-$ "x+h)-p@™
Now (rth) (x)2<p(a Get) —g (@) from a previous step

h b™h
n
Va™n
= b?”h Substitute in for ¢ (a™x + a™h) — p(a™x)

_ a™h a™

~ (V@) om(Vammen)

_ a™ 1

- (bm)(W(am)(n—l)) ' 7k/h(n—l)

So limw > lim o — =00 since——2—— isfixed
h-0 h ~ h-o0 (bm)(W(am)(n—l)) (Tk/hn—l) (bm)("/(am)(n—l))

n — 1
andas h— 0, Vhn~1 -5 0, SOW—“’O

Therefore, S’ (x)does not exist,and S is non-differentiable on a dense subset of (0, M).
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Chapter 3

The Schoenberg Functions: Sagan’s Proof and Generalization

In 1938, Isaac Schoenberg, a Romanian mathematician, extended the work done by
Henri Lebesgue to construct two space-filling functions, ¢,(x) and ;(x). (A space-filling
function is a mapping of a line or 1-dimensional curve to every pointin a 2-dimensional
space.) Schoenberg proved that his functions are continuous. In 1992, Hans Sagan proved

that these functions are also not differentiable on the closed interval [0,1], except possibly

when x = % + % + -+ Z—;’; forsomem; a; ={0,1,2,...8}. Sagan’s proof is given below:

Theorem: Schoenberg’s two functions, ¢ (x) and P, (x) , defined below, are

continuous and not differentiable on [0, 1], except possibly when:

x=%+§—j+---+g—$ forsomem; a; ={0,1,2,...8}

1o 1 lww 1
Ps (x)=§ Yk=0 7k p(3%kx) = EZk:O z—kp(9kx) and

1o 1 1o 1
Yo(0) =100 S p(32Ix) =23 L p (3% 3%) = 9, (3%)

where

p(x)=10 x € |0, %

p(x)=3x—-1 X € % g
= 2 4

p(x)=1 xe[s's]
= _ B

p(x)=5-3x X € 5 3]

p(x)=0 X € g 2]

andp(x + 2) =p(x),forallx ER
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Graph of Schoenberg’s p function (from Hans Sagan, as cited below)

Note:

Iflis an odd integer, and x € (l — é [+ é ), thenp(x) =1

IfLis an even integer, and x € (l — é,l +§ ) thenp(x) =0

Proof:
|. Show that ¢¢(x) is continuous on [0,1]
1
Let {s; (%)} = {Z—kp(9kx)} k eV
Then |2ikp(9kx)| < zik foreach k (since 0< p(9%x) < 1)
So each term in the sequence is bounded above by zik .
We know that Z,"fzoik is an infinite geometric series with r< 1, and so it converges.
2
Since the series of upper bounds converges, then by the Weierstrass-M test,

Z,‘fzozik p(9%x) converges uniformly on[0,1].

Therefore, %Z,‘fzozikp@"x) also converges uniformly on [0,1] to ¢4 (x).

Now define {f,,} = {% 1S (x)}n=1 to be the sequence of partial sums of ¢4 (x).

Then {f;,,} converges uniformly on [0,1] to ¢, (x) since the corresponding series converges
uniformly to ¢, (x).

Note that each s;(x) = Zikp(9"x) is the product and composition of continuous functions,
and therefore it is continuous.

So each f,(x)is the sum of continuous functions, so it is continuous.



Since {f,,} is a sequence of continuous functions which converges uniformly on [0,1] to
@ (x), we can conclude that:
1 1 . .
@s(x)= EZ,‘;‘;O z—kp(9kx) is continuous on [0,1]. See IV in Background Information.

Similarly, p,(x) is also continuous on [0,1].

Il. Show that ¢ (x) is not differentiable on (0,1), except possibly when:

x =g+ 24+t forsomem; a; ={0,1,2,...8}

(Proof by contradiction)

Lett € (0,1). Assume that ¢’ (t) exists.

Then by a previous lemma (VIl  in Background Information),
if0<a,<t<b,<1,and a, » tasn— o, and b, = t as n— o, then

lim @s(bn)—@s(an) — <P’s(t)

n-oo bp—an

We will construct 2 sequences, {a, } and {b,;} which contradict our assumption:
Let k,, = [9"t] where [x]=the integer part of x, and t not of the form:

Z—i+g—j+ ---+Z—Z§ forsomem; a; ={0,1,2,...8}

Note: This restriction on the form of t is required so that [9"t] is always strictly less than 9™¢t.

Leta, =k, -9 ™=[9"t](97")
Leth, =k, 9" +97=[9"¢](9) + 97"

So there are either infinitely many k,, which are odd or infinitely many k,, which are even.

Case i: There are infinitely many even la
Let {k, } be a subsequence of {k, } such that k,, is even.

Let {a,} and {b,,} be the corresponding sequences.

0s(bn) = Ps(an) =3 Tito e P(9¥by) =5 T o7 P(9Fay)

1w 1 _ _ 1w 1 _
= %5 P9 ka9 + 97 = S Bz (9Fk, 9

21
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N | =

i PO+ 9N =5 p R

%Zlc?:Ozik . (p(9k_nkn + 9k—1) — p(9k_nkn)) Now, express this as 2 sums:

=3 Zkzbar (P9 M + 97 = p(9 M) )+ S E g (PO en + 97) = p(9 k)

=M+ M,

Now we will get a lower bound for M;+ M,:

First find a lower bound for M, (k < n):

Recall, given a linear function and 2 ordered pairs (x; y;) and (x, y,) which satisfy the function:

Y2 —y1 =mlx; —xq)
In a step-wise linear function, if x, > x;, then y, —y,; attainsits least value when mis the smallest
and (x, — x,) is the largest in that step.
Note that the smallest possible value of p(9¥ "k, + 9%~") — p(9*~"k,) occurs when both (9% "k, + 9%™)

and (9%"k,) lie inthe intervalwhen p(x) = 5 — 3x, where the slope is at its least value (—3).

p(gk—nkn+ 9k—n)_p(9k—nkn) _
gk-n -

So the smallest value occurs when 3

So the smallestvalue occurswhen  p(9% "k, + 9% ™) — p(9%"k,) = —3(9% ™)

So M, :%Zﬁ;ézik (p(9k_”kn + 9k_n) — p(9k_nkn)) from above
1 11 _
> > Z;(l:(% v (-3) (9k ™) substituting in the smallestvalue for p(9¥~"k,, + 9¥™™) — p(9¥~"k,,)

3 en-11 rak-
=7Zﬁ=32—k (9 ™)

k
-3 - 9
=— ;(1_8 (—) This is a finite geometric series, which we sum in the next step.

=

=3 ((z)n — 1) This is a Lower Bound for M;

) Using algebra, we get the next step:
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Now we find a simplified expression for M, (k > n):

My=23, % (P(9F Tk + 95 — p(95 k)

Consider (9k‘”kn). This is the product of an odd nhumber and an even number, and so itis
even. So p(9%"k,)=0.

Consider (9% "k, + 9%~™).This is the sum of an even number and an odd number, and so
itis odd. So p(9% "k, + 9k ™)=1.

1 1
So M,= S Yhen ok (1-0) Substituting in for p(9¥ "k, + 9%~™) and p(9%~"k,,) in above equation

1l 1 _ 1 1 _1 . o .
=3 Zk:n ok = Z\gn-1) T Calculating the sum of an infinite series, r<1

Ps(bn)=@s(an) _ My+M,
bp —an 9—m

Now consider
= 9n(M1 + Mz)

-3 9\ 1
>on (m ((E) - 1) + Py ) substituting in the LB for M; and M,

3 4N\ . .
=z +?(E) This diverges to 0 asn — oo,

So lim s (bn)=p5(2n) does not exist when Ia iseven and x € (0,1), except possibly when

n—oo n —Qan

X =%+%+ '”+Z_Z: forsomem; a; ={0,1,2,...8}
Therefore, ¢’ (t) does not exist when k, is even, for x € (0,1), except possibly when
x=242%2 4. 40 forsomem; a; ={0,1,2,...8}

T 9l 92 9m

Case ii: There are infinitely many odd la
Let {k,,} be a subsequence of {k, } such that k,, is odd.

Let {a,} and {b,,} be the corresponding sequences.
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(ps(bn) - ¢s(an) = % Z?:Ozik ) p(gkbn) - %ZZO:O Zik ' p(gkan)

= % k=0 ik P(9k(kn9‘” + 9—n)) - %Z;io:o Zik - p(9%k,,9™™) Subinvaluesforb, &a,
_1lyow 1 k—-n k-n 15 1 k-n :

_Ezkzoz_k p(9 kn + 9 ) —EZkzoz—k-p@ kn) using algebra

=1 L k-n k—-n k—-n . .

) Zk (P(9 k,+ 9 ) — p(9 kn)) combining into 1 series

=Iynaad (p(9F "k, + 957) — p(96ey) )+ 18, e (p(9F ey + 9F7) — (95 )
=M+ M,
Now we will get an upper bound for M;+ M,:

First find an upper bound for M, (k < n):

Note that the largest possible value of p(9¥ "k, + 9¥~™) — p(9¥~"k,,) occurs when both

9k="k, + 9K~ and 9% "k, lieinthe intervalwhen p(x) = 3x + 1, where the slope is greatest (3).
(See explanation provided above for lower bound.)

p(* Mhn+ M) —p(9F Mky) _
gk-n

So the largest value occurs when
So the largest value occurs when  p(9% "k, + 9%™) — p(9%"k,) = 3(9k ™)

1

From above, Ml——Z” : = (p(9" "k, + 9%) — p(9%- "kn))

1 1 _
< ¥k 3 - 3(9%™) substituting in the UB for p(9%~"k,, + 9K~™) — p(9*~k,,)

2 k=0 05k
k
Sy () &
2 “k=0\2) on
3 n—-1(9 k .
=—>>""0l= This is a finite geometric series, which we sum in the next step
2-9n 2

—9l Use algebra to get the next step:

= ((—)n — 1) This is an Upper Bound for M;
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Now we find a simplified expression for M, (k > n):

Consider (9%"k,,). This is the product of an odd number and an odd number, and so it is

odd. So p(9%"k,,)=1.
Consider (9% "k, + 9%~™).This is the sum of an odd number and an odd number, and so it

is even. So p(9% "k, + 9k ™)=0.
1o 1 _ _ _
So My=2 ¥, 2+ (p(9¥hy + 957 — p(9K k) )
1ww 1
=1y, & (0-1)
= E Z,ocozn ;—; This is an infinite geometric series, r<1 which we sum below

g

21’1

SoM; =—

@s(bn)—@s(an) — Mi+M;
bp—an 9~m

Now consider

=9"(M; + M,) Nextwe substitute in values for M, and an UB for M;

3 9\" -1
<" (G (B) - 1) +5 )
9 —n (3 1) + o Use algebra to get the next step

-4 (\" 3 .
= 7(;) - This divergesto —ocoasn — oo,

So lim 2:8n)=¢s(@n) 44 0q not exist when k, odd and x € (0,1), except possibly when

n—-oo n— an
__ap az am . —
x=g+5+ 4% forsomem; a; = {0,1,2,...8}

Therefore, ¢’ (t) does not exist when k,, is odd and x € (0,1), except possibly when

x=%+%+~-'+3—n"; forsomem; a; ={0,1,2,...8}

Therefore, ¢’ (t) does not exist for x € (0,1), except possibly when

_a1 a; a . —
=ittt +ym forsomem; a;=1{0,1,2,..8}



Therefore, @, (x) is not differentiable on (0,1), except possibly when

x =g+ 4+ forsomem; a; ={0,1,2,...8}

Since Y,(x) = ¢,(3x), we can conclude that y;(x) is not differentiable on (0,1),

except possibly when x = % + % + 4+ :—2 forsomem; a; ={0,1,2,...8}.

[ll. Show that ¢, (x) is not differentiable when t = 0:

For this proof, we construct a sequence {h,,} and show that

lim @s(hn)—@s(0) = lim @s(hn)—@s(0)

does not exist
hy,—0 hnp-0 n—oo hp-0

low 1 1o 1
Note: p(0) = — %oz p(9% - 0) =2 X35z (0)=0
Let {h,}= {9%} (So h, »0asn — )

@s(hyn) = @ (9%) =¢;(97™™)
= Yioogw P(9F -9

law 1 _
=2 Yk=03% p(9k—™)

1 11 _ 1 1 _ . ) .
=EZ7}Z=(%2_]( p(gk n) +EZ?=n2_k p(gk n) NOteZ |fk < n, 9k n S é’ Sop(gk Tl) — 0

1 1 —
= > Z;fzn oK p(9k n) Note: 9¥ ™ is odd for k = n as it is a positive integer power of 9, so p(9%~")=1

lgw 1 . o N
==Dren 2—k(1 ) This is the sum of an infinite geometric series, r< 1
Summing the series and multiplying by 1/2

1

hp)—-@s(0) 7w~ 0 (9\"
So L) =050 _ 2z =<—) which diverges to oo asn — oo,
R0 o 2

Therefore, ¢';(0) does not exist. Similarly, 1';(0) does not exist.
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IV. Show that @ (x) and ¢ (x) are not differentiable when t=1:

For this proof, we construct a sequence {g,,} and show that:

Ps(gn)—@s(1) Ps(gn)—ps(1)

lim = lim does not exist
gn—1 gn—1 n-oo In—
1w 1 k 1o 1 K X ) k-
ps(1)= 52k=02_kp(9 1) = 52k=02_kp(9 ) Note: p(9%) = 1 since 9% is odd.
_Zk 05 (1) == (2) =1 Summing up the infinite geometric series
Let{gn}={1 - gin} (So g, »1asn— )

= %Z,cfzo Zikp(‘)k(l — 9in ))  Use algebra to get the next step
1 1 _
=15y A p(9F — 9k M)

= %Z’,};ézikp(‘)k — gk-ny 4 %Z,;'oznzikp@k — 9k=m)  express the above as 2 sums

Note: p(9% — 9%¥=m) =1 fork < n, since (9¥ — 9¥~") is the difference of an odd number and a fraction < =

O

and p(9% — 9% ™) =0fork > n, since (9¥ — 9% ™) is the difference of 2 odd numbers, which is an even number

n-1_1 1ygn-11
__Zk Ozk +_Zk=02_k(0)

-1 1 .. . . .
yns & Thisis afinite geometric series

2 1—
1
1 - 2_n
TL 1 n . .
So (pS(g;) (fS(l) El 1; .= (g) which diverges to oo asn — oo,
n— _9_11 -

Therefore, ¢’s(1) does not exist.
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Similarly, 1’ (1) does not exist.
Therefore, ¢’ (x) and ', (x) do not exist for x € [0,1], except possibly when
X = %+%+ +Z—,’,’f forsomem; a; ={0,1,2,...8}
Therefore, Schoenberg’s two functions, ¢¢(x) and Y4 (x) , as defined above, are continuous
and not differentiable on [0,1], except possibly when

x=%+%+---+:—;’§ forsomem; a; = {0,1,2,...8}

Note: The above proof was adapted from the proofs found in the following documents:

1). Ryder,)J. (2011). The Schoenberg Functions. Word Press. Retrieved April 1, 2024, from
https://caicedoteaching.wordpress.com/wp-content/uploads/2012/01/schoenberg_functions_ryder.pdf.
(2). Sagan,H.(1992). Space-filling Curves. New York. Springer-Verlag.

(3) Thim, J. (2003). Continuous Nowhere Differentiable Functions (2003:320 CIV). [Master’s Thesis, Lulea University of
Technology].

I have expanded the proof to provide more in-depth proofs of several of the steps.

Generalization of Proof

| have generalized the Schoenberg functions by making the following changes to the p
function, and then proven that these generalized Schoenberg functions are continuous and
not differentiable on [0,1], with the possible exception as cited below.

e p(3%Fx) changed to p(j**x) j€ {3,5,7,...}
e p(3%F*1x) changed to p(j***1x)

Theorem: A generalization of Schoenberg’s two functions, @4 (x) and Y¢(x), as defined
below, are continuous and not differentiable on [0, 1], except possibly at

x = j—;+%+---+;—"n‘l forsome m; a; ={0,1,2,...(j2 — 1)}

Ps(0)=; Nieo5PP%)  j€{3,5,7,...)
1w 1 . 1w 1 . . .
Y (1) =5 X0z PG =2 Tilo e PGP - J - %) = @5 (jx)

where

p(x)=10 x € [O, %]


https://caicedoteaching.wordpress.com/wp-content/uploads/2012/01/schoenberg_functions_ryder.pdf

SO bt [j-1 j+1
P =jx-5F xe L

= [j+1 3j-1
p(x)=1 X € B 2],]

_3j+1 . 3j-1 3j+1
p(x)=10 X € 3]2—“;_1, 2]

andp(x + 2) =p(x) for allx €ER. Agraph of the function p follows.

-

RS —

4
v

D
5
3t
24

Figure 1: Generalized Schoenberg’s p function

Note: If [ is an odd integer, and x € (l — % l +j2_—j1 ),then p(x)=1

If l is an even integer, and x € (l — % l +j2_—j1 ),then p(x)=10

Proof:

l. Show that ¢, (x) = %Z?:o Zikp(]'z"x) is continuous on [0,1]
Let {s. (0} = {Zp(*0)} Kk en

Then |2ikp(jz"x)| Szik foreachk  (since 0<p(j¥x) < 1)
So each term in the sequence is bounded above by zik

We know that Z,cf:oz—k is an infinite geometric series with r< 1, and so it converges.

29
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Since the series of upper bounds converges, then by the Weierstrass-M test,
Z,‘;‘;Ozik p(j**x) converges uniformly on [0,1].
Therefore, %Z,‘j’zozikp(jz"x) also converges uniformly on [0,1] to ¢ (x).
Now define {f,} = {% 21 S (x)}:)=1 to be the sequence of partial sums of ¢, (x) .
Then {f,,} converges uniformly on [0,1] to ¢, (x) since the corresponding series converges
uniformly to ¢, (x).

1. . . .
Note that each S, (x) = z—kp(jz"x) is the product and composition of continuous

functions, and therefore it is continuous.
So each f,,(x)is the sum of continuous functions, so it is continuous.

Since {f,,} is a sequence of continuous functions which converges uniformly on [0,1] to

@, (x), we can conclude that:
1 1. : .
@s(x)= Ezzozoz—kp(]y‘x) is continuous on [0,1]. See IV in Background Information.

Similarly, y,(x) is also continuous on [0,1].

Il. Show that ¢, (x) is nowhere differentiable on (0,1):
(Proof by contradiction)

Lette (0,1). Assume that ¢',(t) exists.

Then by a previous lemma (VI in Background Information),

if0<a,<t<b,<1,and a, 2 tasn - o, andb,, = tasn — o, then

lim @s(bn)—@s(an) — (pls(t)

n—-oo bp—an

We will construct 2 sequences, {a, } and {b,,} which contradict our assumption:

Let k,, = [j2"t] where [x]=the integer part of x; and t not of the form:
?—; +?—f 4+ o+ I for some m; a;={0,1,2,..(j2=1)}; j€ {357, ..}

j2m

Note: This restriction on the form of t is required so that [j2"t] is always strictly less than j?"t.
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Let fl; = ]’(; ,j—2n= [I-Znt] (j—Zn)
Let B; = ]’(; ,j—211 +]'—211 = [I'Znt] (j—Zn) +j—2n

Note: b, — @, = j~2"

First we provethat0 < a, <t<b, <1 and @, > tasn - o, and b, > t asn — oo:

Proof of claim:

ia). Show that a,, > 0:

a, = [j2t](G~*) by how we defined @,
We know that j 2" > 0 sincej >3
So we need to show that [j2"t] > 1
Sowe need j?"* > t~1
Soweneed Inj?" > Int~?!

Soweneed2nlnj > —1Int

—Int
2In j

Soweneedn >

So whenever n > % [j?"t] = 1and @, = [j?"t](~?") > 0.

Since we are dealing with n — oo, we can restrict n in this manner.

ib). Showthat a, <t
[j2"t] < j?™t  Since the form of t is restricted.
S0 @ = [jnt]2")

< (j26)(j~2M)

=t

Soa,<t

ic). Showthata, » tasn —» o
We have shown thata, <t

We know that lim t =t

n—-oo

Also, we know that [j2"t] > j?"t — 1



32

So [j#*t](i7*") > ("t — D)
So @, > (j*"t—-1)(G™*™)
So @, >t—(j—*")
Now, rlll_I)Iolot —j =t

Sincet — (j7?") < @, < t, we can conclude that lim @, =t (Squeeze Thm.)

n—oo

iia) Show thatb,, < 1:
We need b, = [j#t](j72") +j "< 1
Soweneed (M) ([j*t]+1)<1
Soweneed [j#t]+1< j&"
Soweneed [j?"t] < j*" —1
Since [j2"t] < j?™t, we will first solve the following inequality:
2t < o —1
e — < —1
r(t-1)< -1
jm > i
So j2* > (1—-t)7!
Inj?" > In(1—1¢)"?!
2nlnj > —1In(1—1¢)

—11ln(1-t)

Son > ,
2Ilnj

—11ln(1-t)

T Ve can say: j#"t < j*® —1 andtherefore [j?"t] < j?" —1and b, <1

Sowhenever n >

—1In(1- —
So whenever n > %ﬂt) b, <1

Since we are dealing with n — oo, we can restrict n in this manner.

iib). Show that b, >t :
b, = [jt](=2) + 2"
We know that [j2"t] > j2"t — 1
So [j#](7*) > (%t — (™M)
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So [j2"t](j72") > t — (")
So [j7t]GM) + (7)) > ¢

Sob, >t

iic). Showthatb,, - t asn — oo:
Recall, b, = [j2"t](j~2") +j=2"
Since [j2"t] < j#'t, then
#1G72) < GG
So [[Zrt](j72) + j72n < (jAO)(j7) 4 =t + j 20
Sob, < t+j2"

Now, lim (¢t +j72") =t
n—->o0o

We have shown above that E; > t,andwe knowthat limt =t

n—-co

Sincet < b,, < t + j~?", we can conclude that lim b, =t.  (Squeeze Thm.)

n—-oco

So we have shown that 0< @, <t <b, <1 for large enough values of n and that
lim @, = tand lim b,, = t.

n->oo n—-oo

Now we consider two groups of la: odd l;; and even la

There are either infinitely many k,, which are odd or infinitely many k,, which are even

Case i: There are infinitely many even la
Let {k, } be a subsequence of {k, } such that k,, is even.

Let {a,} and {b,,} be the corresponding sequences:

a, = k,(j7*") and b, =k, ")+

1 oo 1 . 1 voo 1 .
@s(by) - ps(ay) =52k=02_k ) p(IZRbn) _52k=02_k ' p(JZkan)
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1

w 1 , . . 1w 1 . ._
=_Zk=02_k'p(]2k(kn] 2n+] 2n))_52k=02_k_p(]2kkn] Zn) Sub invalues of b, & a,

N

[y

o0 1 . —_ . _ 1 woo 1 . _
“Zk=02_k'P(]2(k n)kn_|_ ]Z(k n))_52k=02_k'29(]2(k n)kn)

N

Zl?zozik' (p(jz(k_n)kn + jZ(k—n)) - p(jz(k_n)kn)) Combine series, factor out Zl—k

1l
N | =

N | =

ynoi ik (p(]z(k m 4 j2U n)) p(]z(k ) ))

T (p(jZ(k—n) e + 20 = p(j20m) kn)) express the series as 2 sums
=M;+ M,

Now we will get a lower bound for M+ M,:

First find a lower bound for M, (k < n):

Note that the smallest possible value of p(j2¢ ™k, + j2(k-)) — p(j2:-™k ) occurs when both
p(j2Mk, + j2k™) and p(j2*"Mk,) leintheintervalwhen p(x) = 312—+1 —Jjx , where the slope

is at its smallest value (—j). (See proofin original proof for further explanation.)

p (2R, + 2= _p(j2(k-m) )
j20=m) =

So the smallest value occurs when

So the smallest value occurs when p(jz(k_")kn + jz(k—n)) - p(jz(k—n)kn) = _j(jz(k—n))
So Ml__zn §= (p(]z(k n)k + jz(k n)) p(]z(k ke )) from above

> % Yro zik (=) (2*™)  substitutein the LB of p(j2*k-Mk,, + j2-m) — p(j20m, )

~ ~ k
]znl 201 = 12 (_)JL

2
i gne1 (12)"
= 2 j2m ﬁzo (?) This is a finite geometric series which we sum below
2\
(L
_ i ! (z)
2.j2mn _ ﬁ
7\ ()

- 2\ o
=(m) ((—) — 1) this is a Lower Bound for M;
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Now we find a simplified expression for M, (k > n):

M2=%Zlio=n2ik' (p(jZ(k—n)kn + jZ(k—n))) _ p(jz(k—n)kn)

Consider (j2*~™k,, ). This is the product of an odd number and an even number, and so it
is even. So p(j2*~Mk, )=0.

Consider (j2*~™k, + j2(k-™) This is the sum of an even number and an odd number,
and so itis odd. So p(j2k"Mk, + j20m)=1

1 1
So M,= S Zlioznz_k (1 —0) substituting in values for p(j2*k ™k, + j2k-m) & p(j2k-M,)

N | =

Sk = 2(h) -4
k=n2k 2 \2n—-1 n

SOM2 :i

2n

@s(bp)—ps(an) — M,+M,
bp_an jmm

Now consider

=f2n(M1 + M,)

2

) . 2\ T 1
ijn ((m) ((]?) — 1) + 2—n> Sub in value of M, ¢ LB for M;

2\ 2. .
—-j-2
= (]—) (—] - / ) + - / Since j = 3, this divergesto @ asn — .
2 j2-2 j2-2

So lim 2:8n)=9s(@n) 45 0q not exist when k, is even and x € (0,1), except possibly when

n—oo n—-Qan

X = j—;+?—f+-~+% forsomem; a; ={0,1,2,..(j* — 1)}

Therefore, (p's(x) does not exist when la iseven and x € (0,1), except possibly when
X = ?—;+?—f+ +]c12_,,n11 forsomem; a; ={0,1,2,..(j2 — 1)}
Case ii: There are infinitely many odd la

Let {k,,} be a subsequence of {k, } such that k,, is odd.



Let {a,,} and {b, } be the corresponding sequences.

05(bn) - 05(an) =3 o35 P(*ba) =3 i3 0 an)

= Yoz (Zk(kn] 2”+J‘2"))——Zk o5 PG knj ™)

T2

N | =

0 1 . _ . _ 1 oo 1 . _
Zk:oz_k'P(]z(k Mk, + j2* n))_52k=02_k'27(]2(k n)kn)

ZIOCO=Ozik. (p(jZ(k—n)kn + j2em) — p(jZ(k—n)kn))

Il
N | =

= Xzt (PGP + j20) — p(j2E Mk, ) )

+ 3Tty (PGP ke + j206) = p (2 k)

=M+ M,

Now we will get an upper bound for M;+ M,:
First find an upper bound for M, (k < n):

Note that the largest possible value of p(j2k Mk, + j2k-1) — p(j2=mk ) occurs when both
p(j2* Wk, + j2*k) and p(j2*Mk,) lieintheintervalwhen p(x) = jx —j_Tl, where the
slope is greatest (j)

2(k— n)k 4 j20en) 2(k-n)),
So the largest value occurs when d / T2 2) w0 ) =]

So the largest value occurs when  p(j2¢ Mk, + j2Em) — p(j2k-mg ) = j(j2Kk-1)

From above, M; :%ZZ;gzik (p(jz(k—n)kn + jRkm) — p(jZ(k—n)kn))

36

1 1
= Ezz %2 (])(]Z(k n)) Substituting in the largest value for p(j2x~™k,, + j2m) — p(j20-m )

1

_] n 1 (]Z(k n)) Factoring out aj

k
_J - 1 )
_EZ k=0 ( ) ]Z_n using algebra
J 1 (12"
— n—
2.j2m 4k=0 (7) factoring out —
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summing the finite geometric series

i2

. n
=(—7L  V((L) — o
= ((jz_z)(jzn)) (( . ) 1) this is an Upper Bound for M,

Now we find a simplified expression for M, (k > n):

Consider (j2*~™k,, ). This is the product of an odd number and an odd number, and so it is
odd. So p(j2*~Mk, )=1.

Consider (j2¢~™k, + j2(k~™) This is the sum of an odd number and an odd number, and

soitis even. So p(j2*~Mk, + j2k-m)=0

M2=%Zloco=n2ik. (p(jZ(k—n)kn + j2kem) — p(jz(k‘")kn)) from above

1ww 1 1o 1 o lge 1 1( 1 \_ 1
=y (0-D=i3r, D =-13r, 5= —1(GH)--=

@s(bn)—@s(an) — My+M;
bp-an jmm

Now consider

=j2n(M1 + M,)

. . 2\ N 1
SJZn ((UZ—ZJW) ((]?) — 1) — 2—n> Subbing in value of M,& UB of M,

2\ .2 . .

= J J =j=2 J — . .

== \7 - - This divergesto —o asn — oo sincej = 3
2 j2-2 j2-2

So lim 5(Bn)=¢s(an) does not exist when l?,; odd and x € (0,1), except possibly when

n—oo n—-an

X = ?—;+j—f+~--+;—";¢ forsomem; a; ={0,1,2,..(j2 - 1)}



Therefore, ¢’ (t) does not exist when k,, is odd and x € (0,1), except possibly when

x = ?—;+j—f+---+a—m forsomem; a; ={0,1,2,..(j2 - 1)}

j2m
Therefore, ¢’ (t) does not exist for x € (0,1), except possibly when
i2m

x = ?—;+j—f+---+f—m forsomem; a; ={0,1,2,...(j2 — 1)

Therefore, @¢(t) is not differentiable on (0,1), except possibly when

X = j—;+j—f+---+a—m forsomem; a; ={0,1,2,..(G* - 1)}

jzm

Since Y, (t) = ¢s(jt), we can conclude that 1, (t) is not differentiable on (0,1),

am

except possibly when x = j—; + j—j + -4+ -2 forsomem; a; ={0,1,2,...(j2 — 1)}

jzm

l1l. Show that ¢4 (x) is not differentiable when x = 0:

For this proof, we construct a sequence {h,,} and show that:

. hp)—@s(0 . hy)—@s(0
lim @s(hn)—@s(0) = lim @s(hn)—@s(0)
hp—0 hp-0 n-o hpn—

1o 1 , 1o 1
Note: ¢,(0) = 52k=02_kp(/2k - 0) =52k=02—kp(0) =0

does not exist

Let {h,}= {]%} (So h, »0as n— ©)
@s(hn) = @5 (]%)
= Zieoy PG )
=3 Zizogr P(T)
=5 TR 5 p(PET) + S B e p ()
Note:ifk <n,(j2™) <5 < s <I= forjz 3. Thusp(j2¢—) =0

1 1 . -
=§Zf<°=n2_k P(]Z(k n)) Note: j2~Mis odd for k > n, so p(j2*~)=1

1 1

1 oo _
=52k=n2_k(1) _2_"

38



Now Ps(hn)—@s(0) — zi”_ 0 =(£)n

1
hyp—0 =0 \2

Since j = 3, this divergesto © asn — .

Therefore, ¢'s(0) does not exist and similarly 1’;(0) does not exist.

IV. Show that ¢4 (x) and ¢ (x) are not differentiable when t=1:

For this proof, we construct a sequence {g,,} and show that:

. - 1 . - 1 .
lim @s(gn)—ps(1) = lim Ps(gn)—ps(1) does not exist
gn—1 gn—1 n-oo gn—1

low 1 . 1 v 1 i
Note: @S(1)=52k=02_kp(]2k ) 1) =E Zk:OZ_kp(JZk)
1w 1 1
= 2kmor (D) =5 (@2) =1
Now we construct {g, } and examine ¢,(g,,):

Let{gn} = {1 - ]%} (So g, »1asn- )

1

(ps(gn)=(ps(1 - JE
law 1 .. 1

=5 2k=05e PG (1 = )
lew 1 .. o (ke

=3 Zicoze PG —j2E)

1 11 . o (T 1wew 1 . o (o
= S XRS0 e PGP = 2UM) + S XL e p (P — 20

Note: Ifk <n, (j2*-™) Sjiz <j2;],1 .Sop(j?k — j2k-m) =1 as j2k — j2(k-1) jsthe difference of an odd

. j—1
number and a fraction less than ]2—] .

Alsoifk = n, p(j2k — j2k-m) =0, as j2k — j2(k~™) jsthe difference of 2 odd integers

1wn_q 1 1ww 1
= I ()45 8,2 (0)



So LsWn)=es(M) _ (1-5m)-1 _ (jz)”

gn-1 (1—%)—1

which diverges to 0 asn — oo, since j = 3

Therefore, ¢'¢(1) does not exist. Similarly, ¢'s(1) does not exist.

Therefore, ¢’ (x) and ¥';(x) do not exist for x € [0,1], except possibly when

X = ?—;+?—f+---+a—m forsomem; a; ={0,1,2,..(j* — 1)}

j2m

Therefore, Schoenberg’s two functions, ¢ (x) and P ,(x) , as generalized above, are
continuous and not differentiable on [0, 1], except possibly when

X = ?—;+%+---+;—’:‘n forsomem; a; ={0,1,2,..(j2 - 1)

40
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Chapter 4

Rudin’s Function: Original Proof and Generalization

Walter Rudin was an Austrian-American mathematician. He published his proof of the
existence of a real continuous function on the real line which is nowhere differentiable in
1958. His proof is given below:

Theorem: There exists a real continuous function on the real line which is nowhere

differentiable.

Proof:
Part |I: Construct the function

Define ¢(x) = |x| for (—1 < x < 1) and extend the definition of ¢(x) to all real x by
requiring that p(x + 2) = @(x)
So @ is a periodic function, of period equal to 2, by virtue of its definition.

First we prove that |@(s) -@(t)| < |s- t|forallsandt:

Note: Either|s —t| = 1,or|s —t| < 1

Case1:|s—t|>1

We know that 0 < ¢(s) < 1and 0 < ¢(t) < 1 by how we defined ¢(x).
Therefore, |p(s) — @(t)]| < 1.

Therefore, |p(s) — @(t)| < |s —t|

Case2:|s—t| <1
Lets*= @(s) and t*= @(t) . We consider 4 possibilities for Case 2:
i) s=2n+s" and t = 2n+t*

Is—tl=1Cn+s) —QCn+t )= Is"—t" | =lp(s) — )]

Therefore, |@(s) — @(t)| =|s — t|
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i) s=2n—s*and t = 2n—-t"
Is—tl=|2n—-s)—QCn—-t")|= [t"=s"| = |s"=t" | =|p(s) — ()|
Therefore, |@(s) — @(t)| =|s — t|

i) s=2n+s" and t=2n-t"
Is—t| = |2n+s*)—2n—t")]
= |s*" +t7|
> |s* —t*| since0<s*<1and0<t*<1

=lo(s) — (D]

Therefore, |p(s) — @(t)| <|s — t|

iv)s=2n+s* and t=2(n+1)-t
|s—tl=lt—s|=12(n+1)—t* —(2n+s")|
=2—t" —s*|=1—-t"+1-s"=|Q1—-t*)+ (1 -5
Nowsince 0<t*<1land0<s*<1, (1—-t*)=>0and(1—-s*) =>0:
=|(1-t")—- (A —-s)|
=[s"—t" | =]o(s) — @Ol
Therefore, |p(s) — @(t)| < |s —t]

So we have shown that in all cases, |@(s) — @(t)| < |s — t|

Next, we investigate whether or not @ is continuous on the real numbers.

Let € > 0 be given. Lett € R such that |t — x| < «.

Then by the above proof, |p(t) -p(x)| < |t - x| < e.

Therefore, @ (x) is continuous on the real numbers by the definition of continuity.

Next, we construct the following function, f(x):

F@) =300 Or @)=Y, O p(441x)
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Part Il: Show that f(x) is continuous on R
Expanding f (x), we get:

)= p(4°x) + D' p(4'x) + )? @(4%x) + ...
The corresponding sequence is:

0} ={e), D' 0(4'0), O 0(4*x),...}

Since @(x) < 1, each term in the sequence is bounded (absolute value- wise) above by M, :

O e 0 |- () el < ()7 =M,

|fie ()| =

. . . k-1 ..
Now consider the series formed by the maximum values for each term: Yp_,(3)" . Thisis

the sum of an infinite geometric series with r < 1, and therefore it converges.

By the Weierstrass-M Test, since |fi,(x)| <M, (x €R; k=1,2,3,...)andsince
Yr=1 M, converges, we can conclude that

Yie1 fid) = sy OF 1 (4% x) converges uniformly to f(x).

Now define {S,} = {X=; fi(x)};=, to be the sequence of partial sums of f(x).

Then {S,,} converges uniformly to f(x) since the corresponding series converges uniformly
to f(x).
N

-1
Note that each fi (x) = (Z) <p(4"‘1x) is the product and composition of continuous

functions, and therefore it is continuous.
Soeach S,(x) = {3, fi(x)}s=, isthe sum of continuous functions, so it is continuous.

Since {S, } is a sequence of continuous functions which converges uniformly to f(x), we
can conclude that:

f(x)=2r=1 (z)"‘1 @(4%=1x) is continuous on the real numbers. Therefore,

f(x) =Xn=0 O" @(4"x) is continuous on the real numbers.
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Part Ill: Show that f (x) is nowhere differentiable

First we construct a difference function, y,:

. P 1, ._ L
Fix a real number x and a positive integer m. Put &8,, =+ 2 (4~™) where the sign is chosen so that
. . . . . 1
there is no integer between 4™x and 4™ (x + §&,, ). This is possible, since 4™|6,, | ==

Define:

_ (4 (x+8m) - 0(47%)
Yn - 6m

We want to investigate the value of y, whenn > mandwhenn < m.
First consider n > m:
46, = (4"™) (4™) (6,,) =(4™™) (i%) , Which is an even integer.

_ @AM x +4"6, ) —p(4"x) _ @e(4"x + eveninteger ) — p(4™x) _ @(4"x) — p(4™x)
m Sm Sm

So Yn by our definition of ¢

=0

Soforn > m, y,=0.

Now consider n < m:

(4™ (x+6m)) — (4™x)
Om

P(4"(x+8m)) — p(4"x)
[ | = L2

<

see part | of this proof

= l4n] =47

_ |4”6m

_(Sm

So|y,| < 4™ forn < m.

Now we evaluate |y,, |:

4M(x+6 - @p@aMx
|Vm | = |(p( Ce+Om) = o€ ) Since there is no integer between

Sm

_ |‘P(4mx +4™M8m) — p(4™x) _ |(P( 4M8m) |
Sm Sm
(4™x + 4™§,,) and (4™x)

o(+3) | _ 4m
(#3)@™™)

So [Ym| = 4™
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. . . . Sm) —
Now we investigate the difference quotient |f(x+;"—)f(x)
m

FOc+8m) = £00) | |20 O™ (x+8m)-Tozo ()M@(4™x)

Sm Sm
_ |ERe @ e (x+8m) — (4" 0]
Sm
w  (3\"

- [270(5) 0w

= |Z?=0 G)n(]/n) + Z%ozm_n (Z)n(]/n)| write the above summation as 2 sums

= |Zﬁ=0 G)n()/n) + 0| sincey, =0 forn>m

n

= 2o @ ()|

= |(Z)m()/m) + Z;lnz—ol G)n()/n)l write the above summation as 2 sums

= |(Z)m()/m)| — |Z;n=_01 G)n()/n)l absolute value rules

= O™pml — 205 O™0m)]

> (z)mlynl — ;Ln=_01 |(%)n| h/nl subtract a larger (or equal) quantity from the right

2 (z)ml)/ml - Z;nz—ol (z)n(4n) subtract a larger (or equal) quantity from the right again since

[V | < 4" forn<m
3™ m m-1 (3" n . m
= (4—m X 4 )— neo (4—n X 4 ) Substitute 4™ for |Yp,|
=3m_ ym-l3n This is a finite geometric series
= 3m_ (1—3m) _ 3m 4 (ﬂ) =1@3m+1)
1-3 2 2
So f—("”;":l‘“") > (3™ +1)
Consider f'(x) = Slimow. We have defined 8,, = (+2)(4™™).
m™ m

Soasm = «,§,, = 0.

Also, we have found that > %(3"1 +1).

fx+8m)—f(x)
Sm

Soasm— 00,%(3m + 1) - oo,

fx+8m)—f(x)
Sm

— 00,

and therefore,
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fatim-f@)

Soasm— ,§,, - 0 and 00,

Therefore, f'(x) = 6lim0 w does not exist for all x.
m™ m

Therefore, f (x) is nowhere differentiable.

Note: The above proof was adapted from the proof by Walter Rudin in Principles of Mathematical Analysis, Third Edition.
New York, Mc-Graw-Hill, Inc., 1976. | have expanded the proof to include proofs of claims which were not proven in the
original and more in depth proofs of several other steps.

Generalization of Proof:

I have generalized Rudin’s function and proof by making the following changes:

e Change the period to 2a suchthat (—a < x < a); a €N

e Fixanumber b such that b = 4j where j is a natural number.

e letcbearealnumber,1 <c < ba

e Construct a function f (x) such that f (x) =X7-¢ 5)" @((ba)™x)

e Fixanatural number q such thats € {2,46,...}, q > % and q = 2,and change + % to+

Q|-

(*See notes at end of Part | regarding reasons for restrictions on variables.)

Generalized Proof:
Part I: Construct the function
Let a be a natural number.

Fix a number b such that b = 4j where j is a natural number. (So b is a positive integer
multiple of 4.)

Letc bearealnumber,1 < c < ba

Define ¢(x) = |x| for (—a < x < a) and extend the definition of ¢ (x) to all real x by
requiring that

e(x + 2a) = ¢(x)
So @ is a periodic function, of period equal to 2a, by virtue of its definition.

Note that ¢(0) =0, so (0 + 2a) =0, so ¢(2a) = 0, and thus ¢(even integer)=0

Also, for all realnumbers s and t,
lp(s) -] < |s- ¢

(This fact can be proven similarly to the proof given for Rudin’s original function.)
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Next, we investigate whether or not ¢ is continuous on the real numbers.
Let € > 0 be given. Lett € R such that |t — x| < «.
Then by the above, |p(t) -p(x)| < [t- x| <e.

Therefore, @(x) is continuous on the real numbers by the definition of continuity.

Next, we construct the following function, f(x):

c k-1
f) =20 @ e(ba)yx) =37, () o((ba)<x)

*Reasons for restrictions on variables:

We need (ba)™ to be an integer multiple of 2a.Therefore, b™ must be an integer multiple of 2, and a™ must be
an integer multiple of a. So b must be an integer multiple of 2, and a must be a non-zero integer. | have
chosen to restrict both a and b to the natural numbers.

b . .
We also need 7 to be an integer multiple of 2a, and we need q > 2, sowe need b > 4
We need ¢ < ba, in order for i < 1, which we need in order to sum an infinite geometric series.

We need ¢ > 1, in order for lim ﬁ (c™ + 1) to be . This is needed for the final part of the proof
m—oo C—

Part Il: Show that f (x) is continuous on R

Expanding f (x), we get:

F() = (D)° @((ba)°x) + ) 9((ba)'x) + (£)? @((ba)?x) + ...
The corresponding sequence is:

e} ={e), D" e((ba)'x), ) ¢((ba)*x),...}

k-1
So the kth term in this sequence is: fi(x) = (é) o((ba)k1x)

Since ¢(x) < a, each term in the sequence is bounded (absolute value- wise) above by M, :

@1 =|(2) " o)) |- (2) e(a) 0| < (5) a =M,
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k-1
Now consider the series formed by the maximum values for each term: X ;7_, a(i) . This

is the sum of an infinite geometric series with r < 1, and therefore it converges.

By the Weierstrass-M Test, since |f, (x)| <M, (x €ER; k=1,2,3,...)and since
Yr=1 M, converges, we can conclude that

Yie1fie = Xier ()T ((ba)*~'x) converges uniformly to f (x).

Now define {S,} = {3~ fi(x)}n=, to be the sequence of partial sums of f(x).
Then {S,} = {3, fi(x)}n=1 converges uniformly to f(x) since the corresponding series

converges uniformly to f(x).

K
Note that each f,(x) = (i) @((ba)¥x) isthe product and composition of continuous

functions, and therefore it is continuous.

So each §,,(x)is the sum of continuous functions, so it is continuous.
Since {S, } is a sequence of continuous functions which converges uniformly to f(x), then

by Theorem IV in Background Information, we can conclude that:

F() =m0 (2" 0((ba)x) = 5, () 9((ba)1x) is continuous on &

Part Ill: Show that f (x) is nowhere differentiable
First we construct a difference function, y,:

Fix a realnumber x and a positive integer m.

Fix a natural number q such thats € {2,46,...}, g > i and q = 2. This would makeg <a

and-<

QR
N | =

. 1 1 1
Since 5 <aq, then Q (5) = E We need these restrictions on q for subsequent steps in the proof.
1 -m . . .
Put &,, = i; ((ba)~™) where the sign is chosen so that there is no integer between
1
q

(ba)™x and (ba)™(x + &8,,). Thisis possible, since (ba)™|8,, | = S;
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Define:

_9((ba)"(x+8m)) — @((ba)"x)
Yn - 6m

We want to investigate the value of y, whenn > mandwhenn < m.

First consider n > m:
(ba)" 6 = ((ba)"™™) ((ba)™) (6)
= ((ba)"™) (£3)
- £[(2) @] (@)1 =a muttipte of 2a

(since (ba)" is an integer multiple of 2a and s is an integer multiple of 2a)

_p((ba)"x + (ba)*6,, ) — p((ba)"x) _ @((ba)™x + multiple of 2a) — p((ba)™x)
Sm Sm

( substitute “multiple of 2a” for (ba)™8,, )

So Vn

_ 2((@a)"x) — ¢((ba)"x) _ 0

3 By our definition of ¢: @ (x + a multiple of 2a) = @(x)
m

Soforn > m, y,=0.

Now consider n < m:

B (p((ba)n(x+6m)) - o((ba)™x)
AN .

< |((ba) (x+8m)) — (ba)"x) (See Part | of proof)

Sm

1

(ba)"5m|
m

= |(ba)"| = (ba)"

So|y,| < (ba)" forn < m



Now we evaluate |y, |:

_ |e((ba)™ (x+8m)) — ¢(ba)™x)
h/m | - Sm

_ |<p((ba)mx+(ba)m6m) - p(()™0)
Sm

Now since there is no integer between (ba)™(x + 6,,,) and (ba)™x, @((ba)™x + (ba)™6,,) = p((ba)™x) + @((ba)™6,,)-

|<p( (ba)™5m)
Sm
o(+3)

(£2)wa—™

Substitute equal quantities in above

1

= W Since% <a@ (i%) =

1
q
= (ba)™

So |[¥m | = (ba)™

fx+6m) —f(2) |,

Now we investigate the difference quotient s
m

220 (1) (b) (x+8m) -3 ()@ ((ba)™x)
Sm

f&x+8m) =) |_
Sm

_|ERe0 G [0 (00" x4 8m) ~ p((ba)"x)]
S

|Zn 0( ) ()/n)|

|Z =0 (ba)n()/n) + Zn m+1 (ba) ()/n)| express above series as the sum of 2 series

|Z =0 (ba)n()/n) + 0| sincey, =0 forn>m
|z =0 (ba) ()/n)|
|(ba)m()/m) + Yo (ba)n()/n)| express above series as a sum

|(é)m()/m)| — |Z,T=_01 (b—ca)n()/n)| absolute value rules

(ba) h/ml - |Z (ba)n(]/n)| c,b,a are positive

_ (ba)ml)/ml - Z |(ba) ||yn subtract a larger (or equal) quantity from the right

50
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> (b_ca)m h/ml — Zﬁ;ol (i)n((ba)n) n < m,so ly,| < (ba)", sowe are subtracting a larger quantity from
the right again

m n
- ((bca)m X (ba)m) - X% ((bca)n X (ba)") substituting (ba)™ for Il

=cM— ?;01 ch This is a finite geometric series

=c™m - (ﬂ) = c™ +(1_Cm) = C_%(cm+1)

1-c¢ c-1

So f(x+6:sn)_f(X)

m

A em
=z —(™+1)

fx+8m)—f(x)

Consider f'(x) = 61;11110 5

We have defined §,,, = (ig) ((ba)™). Soasm - =, §,, - 0.

Also, we have found that w

1 m
> C_l(c +1).

1
Soasm%w,:(cm+1)—>oo since c> 1

fx+8m)—f(x)

and therefore,
Sm

— 00,

fx+6m)—f(x)
Sm

Soasm — ,6,, = 0 and — 00,

fx+6m)—f(x)

does not exist for all x.
Sm

Therefore, f'(x) = slimo

Therefore, f(x) is nowhere differentiable.
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Chapter 5

Concluding Remarks

Continuous nowhere differentiable functions are more prevalent than one would think.
Johan Thim [3] presents a topological proof that “Almost every function in C[0,1] (the set of
continuous functions on [0,1] ) is nowhere differentiable.” In this paper, | have presented
an in-depth study of three of these functions and attempted to generalize the parameters
used. The three functions which | studied (Schwarz, Schoenberg, and Rudin) are all
constructed from an infinite series. Schoenberg and Rudin also included periodic functions
and fractals in their constructions, and Schoenberg constructed a space-filling curve.
These characteristics — infinite series, periodic functions, fractals, and space-filling curves
—are common in many constructions of continuous nowhere differentiable functions.
Other functions have been constructed using techniques including purely geometric
approaches (such as Koch’s snowflake), infinite products (Wen), and topological

approaches. (Thim [4])

The process of generalizing a function and proof requires an understanding of sequences
series; an understanding of derivatives; and an understanding of the elements and
mechanics of the proof and how changing a given number would affect the function and
proof. Although | presented my successful attempts to generalize these functions and
proofs, | often was unable to generalize one or more elements. Often the functions required
integers as opposed to real numbers in their constructions; this can be seen in Rudin’s
function where the period must be defined as “2a”, a being an integer. | attempted
unsuccessfully to generalize the period in Schoenberg’s function; a simple change of the
period from 2 to 4 required proofs of quantities being odd, even, even but not a multiple of
4, etc., all of which were cumbersome and seemingly impossible to carry out if using a

variable instead of a constant.
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Prior to the 19" century, continuous functions were thought to have derivatives at many,
if not all, of their points. This view changed when mathematicians, beginning with Bernard
Bolzano in 1830, began investigating and constructing functions which are nowhere
differentiable on an interval. Bolzano based his function on a geometric construction.
Since then, many other mathematicians have contributed to the body of functions which
are continuous but nowhere differentiable, often employing techniques from Analysis.
These functions today are relevant in the areas of fractals, chaos, and wavelets. (Thim [4])

Generalization of these functions aids in their application and use.
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