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Chapter 1 
Introduction and Background Information 

     The task of finding functions which are continuous but nowhere differentiable has 
mystified and challenged mathematicians for the past three centuries. Bernard Bolzano is 
believed to have constructed the first example of a continuous nowhere differentiable 
function on an interval in 1830. Since then, several other mathematicians have 
constructed continuous functions which are nowhere differentiable on the entire set of real 
numbers or on a dense subset of the real numbers. In this paper, I will examine the work of 
Hermann Schwarz, Isaac Schoenberg, and Walter Rudin in this field. I will present and 
explain their original constructions and proofs of continuous functions which are nowhere 
differentiable or non-differentiable on a dense subset of their domains, and then present a 
generalization of their functions and proofs. Throughout this paper, we utilize the following 
notation: 
                  N represents the Natural Numbers    
                  R  represents the Real Numbers 
 
     In order to construct these functions and prove their continuity and non-differentiability, 
we need a working definition of pointwise convergence and uniform convergence for a 
sequence of functions, and uniform convergence of a series of functions. We also need to 
utilize several theorems about the convergence of sequences/series of functions, namely: 

1. The Cauchy criterion for uniform convergence of a sequence of functions 

2. Theorem: If {𝑓𝑛} is a sequence of continuous functions on 𝐸, and 𝑓𝑛  converges 

uniformly to 𝑓 on 𝐸, then 𝑓 is a continuous function on 𝐸.         

3. Theorem: The Weierstrass M-Test 

4. Lemma: Let 𝑎 < 𝑎𝑛  < 𝑥 < 𝑏𝑛 < 𝑏  for all 𝑛 ∈N, and let 𝑎𝑛 →  𝑥 and 𝑏𝑛 → x.  
If 𝑓:[𝑎, 𝑏] →R is a continuous function and 𝑓’(𝑥) exists, then 

                                          𝑙𝑖𝑚
𝑛→∞

𝑓(𝑏𝑛)−𝑓(𝑎𝑛)

𝑏𝑛−𝑎𝑛
 = 𝑓’(𝑥) 

In the following pages, I will provide the definitions and examples of pointwise convergence 
and uniform convergence for a sequence of functions, the definition of uniform 
convergence of a series of functions,  and proofs of the above 4 theorems and lemmas. The 
sources I used for these definitions and proofs are: 

• Rudin, W. (1976). Principles of Mathematical Analysis, Third Edition.  New York, 
McGraw-Hill, Inc. 
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• Thim, J. (2003). Continuous Nowhere Differentiable Functions (2003:320 CIV). 
[Master’s Thesis, Lulea University of Technology]. 

• Whitaker, John.  Shawnee State University, 2022, Mathematical Analysis II, You Tube, 
https://www.youtube.com/watch?v=s2c44HEPiTc&t=9s. 

 

I. Pointwise convergent sequence of functions  

Definition:  

Suppose {𝑓𝑛} is a sequence of functions defined on a set E. And suppose that the 

sequence of numbers {𝑓𝑛(𝑥)}𝑛=1
∞  converges for any  𝑥 in E. Then we define  

                                                  𝑓(𝑥) = 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛(𝑥) 

and we say that {𝑓𝑛} converges pointwise to the function  𝑓  on E. 

In other words, a sequence of functions converges to the function  𝑓  pointwise on E  
if for every 𝑥 in E and for any 𝜀 > 0, there is an N ∈N such that for any  𝑛 ≥ N,  

|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ 𝜀 

In pointwise convergence, N depends on one’s choice of 𝜀 and 𝑥. 

Example: 

The sequence {𝑓𝑛(𝑥)} = {𝑥𝑛}  for 𝑥 ∈ (0,1) is a geometric sequence with |𝑥| < 1. Therefore, 
it converges to 0.  

For example, choose 𝜀 =
1

10
  and 𝑥𝑜=1

2
 .  Then for 𝑛 ≥ 4, |(

1

2
)

𝑛

− 0| ≤
1

10
. 

 
 

II.  Uniformly convergent sequence of functions 

Definition: We say that the sequence of functions {𝑓𝑛}𝑛=1
∞  converges uniformly on E to a 

function 𝒇  if for each 𝜀 > 0, there is an integer N such that for any 𝑛 ≥ 𝑁, 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ 𝜀  for all 𝑥 ∈ 𝐸.  If a sequence converges uniformly, N does not depend on 

the value of 𝑥. 

 
Example: 

𝑓𝑛(𝑥) = 𝑥𝑛  converges uniformly to 0 on the interval [0,
1

2
] 

 

https://www.youtube.com/watch?v=s2c44HEPiTc&t=9s
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Proof: 

Let  𝜀 > 0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛. We need N∈ N such that for any  n≥ 𝑁, |𝑓𝑛(𝑥) − 0| ≤ 𝜀, for 𝑎𝑙𝑙 𝑥 ∈ [0,
1

2
] 

So we need |𝑥𝑛 − 0| ≤ 𝜀.  So we need 𝑥𝑛 ≤ 𝜀. 

Now, since 𝑥 ∈ [0,
1

2
], then 𝑥𝑛 ≤ (

1

2
)

𝑛

. So we want (1

2
)

𝑛

≤ 𝜀.  

 
Solving this inequality using natural logs, we get: 

𝑛 ≥
𝑙𝑛(𝜀)

𝑙𝑛(1
2
)

 

Since N is not bounded above, there is an N∈N such that 𝑁 ≥
𝑙𝑛(𝜀)

𝑙𝑛(
1
2

)
 

So for any n≥ 𝑁, |𝑥𝑛 − 0| ≤ 𝜀 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ [0,
1

2
]. 

 
 

III. Theorem: The Cauchy Criterion for Uniform Convergence 

The sequence of functions {𝑓𝑛(𝑥)}𝑛=1
∞  defined on 𝐸 converges uniformly on 𝐸 if and only if 

 for any 𝜀 > 0, 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑁 ∈N 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛, 𝑚 ≥ 𝑁,  
                        |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜀 for all 𝑥 ∈ 𝐸. 
 
Proof→: 
Suppose {𝑓𝑛(𝑥)}𝑛=1

∞  converges uniformly on 𝐸 to 𝑓(x). Let 𝜀 > 0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛. 

Then there is an N∈N  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤
𝜀

2
 , for any n≥ 𝑁 and all 𝑥 ∈ 𝐸. 

Thus, for any 𝑛, 𝑚 ≥ 𝑁 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐸, and applying the triangle inequality, 
|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| = |𝑓𝑛(𝑥) − 𝑓(𝑥) + 𝑓(𝑥) − 𝑓𝑚(𝑥)| ≤ |𝑓𝑛(𝑥) − 𝑓(𝑥)| + |𝑓(𝑥) − 𝑓𝑚(𝑥)| ≤ 𝜀

2
+

𝜀

2
 = 𝜀 

 
Proof←: 

Suppose that for any ε > 0, there is an N ∈ N such that for any 𝑛, 𝑚 ≥ 𝑁, 

               |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≤ 𝜀   for all 𝑥 ∈ 𝐸. 

Then for each 𝑥 ∈ 𝐸, {𝑓𝑛(𝑥)}𝑛=1
∞  forms a Cauchy sequence which converges in R . 

Define 𝑓(𝑥) = 𝑙𝑖𝑚
𝑛→∞

𝑓𝑛(𝑥). We want to show that {𝑓𝑛} converges uniformly to 𝑓. 

Let 𝜀 > 0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛. 

To show uniform convergence, we need an N∈ N such that for any n≥ 𝑁 and for all 𝑥 ∈ 𝐸, 

                                                                |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ 𝜀. 
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By the assumption for ←, we know that there is an N ∈  N   such that for any 𝑛, 𝑚 ≥ 𝑁,                              

then  |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≤ 𝜀 for all 𝑥 ∈ 𝐸.                                                                                                                                                                                                                                                                                                                                  

Fix 𝑛 ≥ 𝑁.  𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑙𝑖𝑚
𝑚→∞

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| 

Claim: 𝑙𝑖𝑚
𝑚→∞

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| = |𝑓𝑛(𝑥) − 𝑓(𝑥)| for all  𝑥 ∈ 𝐸. 

This is equivalent to saying: 

             For a given 𝛿 > 0, 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝐾 ∈N 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑚 ≥ 𝐾,  

||𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| − |𝑓𝑛(𝑥) − 𝑓(𝑥)|| ≤ 𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐸. 

Proof of claim: 

Let 𝛿 > 0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛. 𝑊𝑒 𝑛𝑒𝑒𝑑 𝐾 ∈N 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑚 ≥ 𝐾,  

||𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| − |𝑓𝑛(𝑥) − 𝑓(𝑥)|| ≤ 𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐸. 

It can be shown: 

||𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| − |𝑓𝑛(𝑥) − 𝑓(𝑥)|| ≤ |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥) − (𝑓𝑛(𝑥) − 𝑓(𝑥))| = |𝑓𝑚(𝑥) − 𝑓(𝑥)| 

Since {𝑓𝑚(𝑥)} is Cauchy, {𝑓𝑚(𝑥)} converges to 𝑓(𝑥) for each 𝑥 ∈ 𝐸.                                                    

𝑆𝑜 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝐾𝑥 ∈ N 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑚 ≥ 𝐾𝑥 ,  |𝑓𝑚(𝑥) − 𝑓(𝑥)| ≤ 𝛿    

Thus, we have proven the claim that  𝑙𝑖𝑚
𝑚→∞

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| = |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ 𝛿   for  𝑥 ∈ 𝐸. 

 

Now since |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≤ 𝜀 for any 𝑛, 𝑚 ≥ 𝑁 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐸, 

                                                 𝑡ℎ𝑒𝑛 𝑙𝑖𝑚
𝑚→∞

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≤ 𝜀. 

Note that for all 𝑥, that limit is the same, i.e.,  𝑙𝑖𝑚
𝑚→∞

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| = |𝑓𝑛(𝑥) − 𝑓(𝑥)| as 

shown in the proof of the claim. 

Thus |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ 𝜀 for any 𝑛 ≥ 𝑁 and for all 𝑥 ∈ 𝐸. 

Thus {𝑓𝑛(𝑥)} 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑜𝑛 𝐸. 

 
IV. Theorem: If {𝒇𝒏} is a sequence of continuous functions on 𝑬, and 𝒇𝒏 converges 

uniformly to 𝒇 on 𝑬, then 𝒇 is a continuous function on 𝑬. 

Proof: 

Let 𝑥𝑜 ∈ 𝐸.  

Let {𝑓𝑛} be a sequence of continuous functions on E which converge uniformly to 𝑓 on E. 
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Because 𝑓𝑛  converges uniformly, we can say: 

     For any 𝜀 > 0, there is an N ∈N such that for any 𝑛 ≥ N, 

                                                                     |𝑓𝑛(𝑥) − 𝑓(𝑥)| <
𝜀

3
 for all 𝑥 ∈ 𝐸. 

Because 𝑓𝑛  is continuous, we can say: 

     For any 𝜀 > 0, there is a 𝛿 > 0 such that  

                   |𝑥 − 𝑥𝑜| < 𝛿   implies that |𝑓𝑛(𝑥) − 𝑓𝑛(𝑥𝑜)| <
𝜀

3
 

Let 𝜀 > 0 be given.   Let x∈ 𝐸.   Let n∈N with n ≥ 𝑁.   Let |𝑥 − 𝑥𝑜| < 𝛿.  Then 

|𝑓(𝑥) − 𝑓(𝑥𝑜)| = |𝑓(𝑥) − 𝑓𝑛(𝑥) + 𝑓𝑛(𝑥) − 𝑓𝑛(𝑥𝑜) + 𝑓𝑛(𝑥𝑜) − 𝑓(𝑥𝑜)| 

                                                           ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑥𝑜)| + |𝑓𝑛(𝑥𝑜) − 𝑓(𝑥𝑜)| 

                                                            ≤  
𝜀

3
+

𝜀

3
+

𝜀

3
= 𝜀 

Since |𝑓(𝑥) − 𝑓(𝑥𝑜)| ≤ 𝜀 whenever |𝑥 − 𝑥𝑜| < 𝛿   , then 𝑓 is continuous at 𝑥𝑜 . 

Since our choice of 𝑥𝑜 was arbitrary, 𝑓 is continuous on 𝐸. 

 

V. Uniformly Convergent Series of Functions 

Before we give the statement and proof of the Weierstrass-M Test, we give a preparatory 

definition of Uniformly Convergent Series of Functions: 

Definition:  

     Let {𝑓𝑛} 𝑛=1
∞   be a sequence of functions defined on E.  

     We say that ∑ 𝑓𝑛
∞
𝑛=1   converges uniformly on E iff 

                   {∑ 𝑓𝑖
𝑛
𝑖=1 }𝑛=1

∞   converges uniformly on E. 

 

VI. Theorem:  Weierstrass-M Test 

    Suppose {𝑓𝑛} is a sequence of functions defined on 𝐸, and suppose 

                  |𝑓𝑛(𝑥)| ≤ 𝑀𝑛     (𝑥 ∈ 𝐸, 𝑛 ∈N).  

    Then ∑ 𝑓𝑛  converges uniformly on 𝐸 if ∑ 𝑀𝑛 converges. 

 

Proof: 

Let {𝑓𝑛} be a sequence of functions defined on 𝐸. 

Suppose |𝑓𝑛(𝑥)| ≤ 𝑀𝑛     (𝑥 ∈ 𝐸, 𝑛 ∈N), and suppose ∑ 𝑀𝑛 converges. 
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Let 𝜀 > 0 be given. 

Since ∑ 𝑀𝑛  converges, there is an N∈N such that for 𝑚 ≥ 𝑛 ≥ 𝑁, ∑ 𝑀𝑖 ≤ 𝜀𝑚
𝑖=𝑛    

        Cauchy Criterion for convergent series                                                                                                                                                                                                                                                                                                                                                                                                                                                   

Since |𝑓𝑛(𝑥)| ≤ 𝑀𝑛, then  |∑ 𝑓𝑖 (𝑥)𝑚
𝑖=𝑛 | ≤  ∑ |𝑓𝑖(𝑥)|𝑚

𝑖=𝑛 ≤ ∑ 𝑀𝑖
𝑚
𝑖=𝑛  

Let 𝑆𝑛(𝑥) = ∑ 𝑓𝑖(𝑥)𝑛
𝑖=1  

For any 𝑚 ≥ 𝑛 ≥ 𝑁,   |𝑆𝑚(𝑥) − 𝑆𝑛(𝑥)| = |∑ 𝑓𝑖(𝑥)𝑚
𝑖=1 − ∑ 𝑓𝑖(𝑥)𝑛

𝑖=1 | 

                                                                             = |∑ 𝑓𝑖(𝑥)𝑚
𝑖=𝑛+1 | 

                                                                             ≤ ∑  |𝑓𝑖(𝑥)|𝑚
𝑖=𝑛+1   

                                                                             ≤ ∑ |𝑓𝑖(𝑥)|𝑚
𝑖=𝑛   

                                                                             ≤ ∑  𝑀𝑖
𝑚
𝑖=𝑛   ≤  𝜀 

So for any 𝑚 ≥ 𝑛 ≥ 𝑁,   and for any 𝑥 ∈ 𝐸,     |𝑆𝑚(𝑥) − 𝑆𝑛(𝑥)| < 𝜀 

So by the Cauchy Criterion for Uniform Convergence, 

             {𝑆𝑛}𝑛=1
∞  = {∑ 𝑓𝑖(𝑥)

𝑛

𝑖=1
}

𝑛=1

∞
 converges uniformly. 

Therefore, the series ∑ 𝑓𝑛(𝑥)∞
𝑛=1  converges uniformly. (See definition above) 

                                                                                                                                                     
                                               

VII. Lemma: Let 𝒂 < 𝒂𝒏  < 𝒙 < 𝒃𝒏 < 𝒃  for all 𝒏 ∈N, and let 𝒂𝒏 →  𝒙 and 𝒃𝒏 → x.  

If 𝒇:[𝒂, 𝒃] →R is a continuous function and 𝒇’(𝒙) exists, then 

                                          𝒍𝒊𝒎   
𝒏→∞

 
𝒇(𝒃𝒏)−𝒇(𝒂𝒏)

𝒃𝒏−𝒂𝒏
 = 𝒇’(𝒙) 

 

Proof: 

Note that       | 𝑏𝑛−𝑥

𝑏𝑛−𝑎𝑛
| <

𝑏𝑛−𝑎𝑛

𝑏𝑛−𝑎𝑛
 = 1         and        | 𝑥−𝑎𝑛

𝑏𝑛−𝑎𝑛
| <

𝑏𝑛−𝑎𝑛

𝑏𝑛−𝑎𝑛
 = 1 

Now we can estimate |𝑓(𝑏𝑛)−𝑓(𝑎𝑛)

𝑏𝑛−𝑎𝑛
 −  𝑓’(𝑥)| by expressing it as the sum of two differences,  

and multiplying each difference by the fraction of the total interval, |𝑏𝑛 − 𝑎𝑛|, which it 

represents.  So, 

|
𝑓(𝑏𝑛)−𝑓(𝑎𝑛)

𝑏𝑛−𝑎𝑛
 −  𝑓’(𝑥)| = 
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= | 
𝑏𝑛 − 𝑥

𝑏𝑛 − 𝑎𝑛
(

𝑓(𝑏𝑛) − 𝑓(𝑥)

𝑏𝑛 − 𝑥
 − 𝑓’(𝑥)) +  

𝑥 − 𝑎𝑛

 𝑏𝑛 − 𝑎𝑛
 (

𝑓(𝑎𝑛) − 𝑓(𝑥)

𝑎𝑛 − 𝑥
 − 𝑓’(𝑥)) | 

                   = |
𝑏𝑛−𝑥

𝑏𝑛−𝑎𝑛
| ∙ |

𝑓(𝑏𝑛)−𝑓(𝑥)

𝑏𝑛−𝑥
 − 𝑓’(𝑥)| + |

𝑥−𝑎𝑛

 𝑏𝑛−𝑎𝑛
| ∙ |

𝑓(𝑎𝑛)−𝑓(𝑥)

𝑎𝑛−𝑥
 − 𝑓’(𝑥)|  since all factors are positive 

                                                           

                  ≤ |𝑓(𝑏𝑛)−𝑓(𝑥)

𝑏𝑛−𝑥
 − 𝑓’(𝑥)| +  |𝑓(𝑎𝑛)−𝑓(𝑥)

𝑎𝑛−𝑥
 − 𝑓’(𝑥)|                       since | 𝑏𝑛−𝑥

𝑏𝑛−𝑎𝑛
| ≤ 1 and | 𝑥−𝑎𝑛

 𝑏𝑛−𝑎𝑛
| ≤ 1          

 

Note: lim
𝑛→∞

|
𝑓(𝑏𝑛)−𝑓(𝑥)

𝑏𝑛−𝑥
 − 𝑓’(𝑥)|  = 0 

     and lim
𝑛→∞

 |𝑓(𝑎𝑛)−𝑓(𝑥)

𝑎𝑛−𝑥
 − 𝑓’(𝑥)| = 0     by the Sequential Criterion for Function Limits 

So lim
𝑛→∞

|
𝑓(𝑏𝑛)−𝑓(𝑥)

𝑏𝑛−𝑥
 − 𝑓’(𝑥)|  + |

𝑓(𝑎𝑛)−𝑓(𝑥)

𝑎𝑛−𝑥
 − 𝑓’(𝑥)| = 0 + 0 = 0 

Therefore, lim
𝑛→∞

|
𝑓(𝑏𝑛)−𝑓(𝑎𝑛)

𝑏𝑛−𝑎𝑛
 −  𝑓’(𝑥)|  = 0           Substituting in a positive lesser value  

Therefore, lim
𝑛→∞

𝑓(𝑏𝑛)−𝑓(𝑎𝑛)

𝑏𝑛−𝑎𝑛
 = 𝑓’(𝑥) 
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Chapter 2 
Schwarz’ Function: Original Proof and Generalization 

     Hermann Schwarz, a German mathematician and student of Karl Weierstrass, published 
his proof of a continuous function which is non-differentiable on a dense subset of the real 
numbers in 1873. The proof is given below. 

    Theorem: The Schwarz function 𝑆: (0, 𝑀) → R  defined by  

    𝑆(𝑥) = ∑
𝜑(2𝑘𝑥)

4𝑘
∞
𝑘=0 ,      where 𝜑(𝑥) = [𝑥] + √𝑥 − [𝑥],     [𝑥] = the greatest integer ≤ 𝑥, 

    is continuous and non-differentiable on a dense subset of (0, 𝑀), with 𝑀 > 0 and 𝑀 ∈ R. 

 

Proof: 

I. Let 𝑺𝒌(𝒙) =
𝝋(𝟐𝒌𝒙)

𝟒𝒌 .     Prove that {𝑺𝒌(𝒙)} is a sequence of continuous functions on (𝟎, 𝑴): 

First we examine the continuity of 𝜑(𝑥) = [𝑥] + √𝑥 − [𝑥]. 

This is the sum of the greatest integer function and the composition of the square root 

function with the function  𝑓(𝑥) = 𝑥 − [𝑥]. 

The square root function and 𝑦 = 𝑥 are continuous for all values of 𝑥 ∈ (0, 𝑀). 

Also, the greatest integer function is continuous for all 𝑥, except possibly when 𝑥 ∈N. 

So 𝜑(𝑥) will be continuous for all 𝑥, except possibly when 𝑥 ∈N, as it is the sum and 

composition of continuous functions. 

So the only possible discontinuities for the function 𝜑(𝑥) might occur when 𝑥 ∈N.  So we 

will investigate this case: 

Let 𝑝 ∈ N. We need to investigate right and left limits of 𝜑(𝑥) as 𝑥 → 𝑝. 

𝑙𝑖𝑚
𝑥→𝑝+

 𝜑(𝑥) = 𝑙𝑖𝑚
𝑥→𝑝+

([𝑥] + √𝑥 − [𝑥]) = 𝑝 + √𝑝 − 𝑝 = 𝑝 

 𝑙𝑖𝑚
𝑥→𝑝−

𝜑(𝑥) = 𝑙𝑖𝑚
𝑥→𝑝−

([𝑥] + √𝑥 − [𝑥]) = (𝑝 − 1) + √𝑝 − (𝑝 − 1) = (𝑝 − 1)+√1 = 𝑝 

Since 𝑙𝑖𝑚
𝑥→𝑝+

 𝜑(𝑥) = 𝑙𝑖𝑚
𝑥→𝑝−

𝜑(𝑥) =  𝑝, then 𝜑(𝑥) is continuous on (0, ∞). 

Now 𝜑(2𝑘𝑥) is the composition of continuous functions, so it is continuous. 

So 𝑆𝑘(𝑥) =
𝜑(2𝑘𝑥)

4𝑘   is the quotient of continuous functions, so it is continuous. 

Therefore, {𝑆𝑘(𝑥)} is a sequence of continuous functions on (0, ∞). 
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Therefore, {𝑆𝑘(𝑥)} is a sequence of continuous functions on (0, 𝑀). 

Furthermore, 𝜑(𝑝) = 𝑝 for all 𝑝 ∈ N. 

II. Prove that the series converges uniformly. 

Let 𝑥 ∈ R,  𝑥 ∈ (0, 𝑀).  

Then 𝑥 can be written as 𝑥 = 𝑝 + ℎ, where ℎ ∈ R,  ℎ ∈ (0, 1) and 𝑝 ∈ {N ∪ {0}} 

Then 𝜑(𝑝 + ℎ) = [𝑝 + ℎ] + √(𝑝 + ℎ) − [𝑝 + ℎ] 

                                =  𝑝 +  √(𝑝 + ℎ) −  𝑝  

                                =  𝑝 +  √ℎ 

Now define 𝑞(ℎ) = 𝜑(𝑝 + ℎ) − (𝑝 + ℎ) 

                   So 𝑞(ℎ) =  𝑝 +  √ℎ − 𝑝 − ℎ = √ℎ − ℎ = (ℎ)
1
2 − ℎ 

                   So 𝑞′(ℎ) =
1

2
(ℎ)

−1
2 − 1 =  

1

2√ℎ
− 1 

We set 𝑞′(ℎ) = 0 to find critical points of 𝑞(ℎ): 

           Solving        1

2√ℎ
− 1 = 0,  we get ℎ =

1

4
.       

Next we find 𝑞"(ℎ) = −
1

4
(ℎ)

−3
2 . 

Now 𝑞" (
1

4
) < 0.  So when ℎ =

1

4
 , 𝑞(ℎ) is concave down. Therefore, 𝑞(ℎ) reaches its 

maximum value at ℎ =
1

4
  . 

So 𝑞(ℎ) ≤ 𝑞 (
1

4
) .  Note that 𝑞 (

1

4
)=√

1

4
−

1

4
 =  

1

4
 

So 𝜑(𝑝 + ℎ) − (𝑝 + ℎ) ≤ 𝑞 (
1

4
)        Substitute 𝜑(𝑝 + ℎ) − (𝑝 + ℎ)   for  𝑞(ℎ) as defined above 

So 𝜑(𝑝 + ℎ) ≤ (𝑝 + ℎ) + 𝑞 (
1

4
).         

So 𝜑(𝑝 + ℎ) ≤ (𝑝 + ℎ) +
1

4
                  Substitute in  1

4
 for 𝑞 (

1

4
) as derived above 

So 𝜑(𝑥) ≤ 𝑥 +
1

4
                                        Substitute in 𝑥 for 𝑝 + ℎ as defined above 

 

Now consider  |𝜑(2𝑘𝑥)

4𝑘
|: 

                             |𝜑(2𝑘𝑥)

4𝑘
|= 𝜑(2𝑘𝑥)

4𝑘          since 𝜑 > 0, 𝑥 > 0 
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                                                        ≤  
2𝑘𝑥+ 1

4

4𝑘                since 𝜑(𝑥) ≤ 𝑥 +
1

4
  (from above)     

                                               =  𝑥

2𝑘  +
1

4𝑘+1                 

                                              <  𝑀

2𝑘  
 + 

1

4𝑘+1       since 𝑥 < 𝑀 

 

So for all 𝑛,  |𝜑(2𝑘𝑥)

4𝑘
| <

𝑀

2𝑘  
 + 1

4𝑘+1                                                                                                                                                                                              

 So each term in the sequence {𝑆𝑘(𝑥)} is bounded above by   𝑀

2𝑘  
 + 1

4𝑘+1 

Now   ∑ 𝑀

2𝑘  

∞ 
𝑘=0   + 1

4𝑘+1    is the sum of 2  geometric series with  𝑟 < 1, and so it converges. 

Then by the Weierstrass-M Test,   ∑ 𝜑(2𝑘𝑥)

4𝑘
∞
𝑛=0   converges uniformly to 𝑆(𝑥) .    

Define {𝑓𝑛} =  {∑
𝜑(2𝑘𝑥)

4𝑘
𝑛
𝑘=1 }

𝑛=1

∞

 to be the sequence of partial sums of 𝑆(𝑥). 

Then {𝑓𝑛} converges uniformly on (0, 𝑀) to 𝑆(𝑥), since the corresponding series converges 
uniformly to 𝑆(𝑥). 
Also, each 𝑓𝑛(𝑥) is the sum of continuous functions, so it is continuous. 

                                           

Therefore, since {𝑓𝑛(𝑥)} is a sequence of continuous functions on (0, 𝑀) which 

converges uniformly  to 𝑆(𝑥),  we can conclude that 𝑆(𝑥) is continuous on (0, 𝑀).  

(See theorem  IV in Background Information) 

 

III. Show that 𝑺 is not differentiable on a dense subset of (𝟎, 𝑴): 

Let 𝑥𝑜 and 𝑥1 ∈ (0, 𝑀). 𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦, 𝑙𝑒𝑡 𝑥𝑜 < 𝑥1. 

We want to show that there is an 𝑥  (𝑥𝑜 < 𝑥 < 𝑥1) , such that 𝑆′(𝑥) does not exist. 

 

Proof: 

Let 𝑥 be a dyadic rational number such that 𝑥𝑜 < 𝑥 < 𝑥1. 

Let 𝑥 =
𝑗

2𝑚 = 𝑗 × 2−𝑚 for some 𝑗, 𝑚 ∈ N.  Let 0< ℎ <
1

2𝑚 

Consider 𝑆(𝑥+ℎ)−𝑆(𝑥)

ℎ
 = ∑

𝜑(2𝑛(𝑥+ℎ))−𝜑(2𝑛𝑥)

4𝑛ℎ

∞
𝑛=0  

                                           ≥ 𝜑(2𝑚(𝑥+ℎ))−𝜑(2𝑚𝑥)

4𝑚ℎ
       since each term in the series is non-negative, the series ≥ one  term 
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From how we defined 𝒋 and 𝒉 above, we can derive:    

2𝑚𝑥 = 𝑗 𝑓𝑜𝑟 𝑗 ∈N   and 2𝑚ℎ < 1 

Therefore, [2𝑚𝑥 + 2𝑚ℎ] = [2𝑚𝑥]= j 

So 𝜑(2𝑚(𝑥 + ℎ)) − 𝜑(2𝑚𝑥) = 

                   = 𝜑 (2𝑚𝑥 + 2𝑚ℎ) − 𝜑(2𝑚𝑥) 

                   = [2𝑚𝑥 + 2𝑚ℎ] + √(2𝑚𝑥 + 2𝑚ℎ) − [2𝑚𝑥 + 2𝑚ℎ] −[2𝑚𝑥] −√2𝑚𝑥 − [2𝑚𝑥] 

                   = 𝑗 + √𝑗 + 2𝑚ℎ − 𝑗   −𝑗 − √𝑗 − 𝑗 = √2𝑚ℎ 

Now  𝑆(𝑥+ℎ)−𝑆(𝑥)

ℎ
 ≥ 𝜑(2𝑚(𝑥+ℎ))−𝜑(2𝑚𝑥)

4𝑚ℎ
     

                                 = √2𝑚ℎ

4𝑚ℎ
    =  

1

2𝑚√2𝑚 × 1

√ℎ
 

So 𝑙𝑖𝑚
ℎ→0

𝑆(𝑥+ℎ)−𝑆(𝑥)

ℎ
 ≥  𝑙𝑖𝑚

ℎ→0
  ( 1

2𝑚√2𝑚  ×
1

√ℎ
) = ∞ 

 

Therefore, 𝑆′(𝑥)𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡, 𝑎𝑛𝑑  𝑆  is non-differentiable on a dense subset of (0,M). 

Note: The above proof was adapted from the proof found in the following document:  Thim, J. (2003).  Continuous 
Nowhere Differentiable Functions (2003:320 CIV). [Master’s Thesis, Lulea University of Technology]. I have expanded the 
proof to provide more in-depth proofs of several steps. 

 

Generalized Schwarz’ Proof 

     I have generalized the Schwarz function and have proven that the generalized function is 

continuous and non-differentiable on a dense subset of the real numbers, as explained below. 

 

Theorem (generalized): The generalized Schwarz function 𝑆: (0, 𝑀) → R  defined by  

     𝑆(𝑥) = ∑
𝜑(𝑎𝑘𝑥)

𝑏𝑘
∞
𝑘=0 ,      where 𝜑(𝑥) = [𝑥] + √𝑥 − [𝑥]𝑛  ,   [𝑥] is the greatest integer ≤ 𝑥,   

               𝑎 ∈ R,  𝑏 ∈ R,   𝑏 > 𝑎 >  1 ,  𝑛 ∈N ,  𝑛 ≥ 2 

     is continuous and non-differentiable on a dense subset of (0, 𝑀), with 𝑀 > 0 and 𝑀 ∈ R.   

Changes from original proof: 

• In definition of 𝑆(𝑥), change   
𝜑(2𝑘𝑥)

4𝑘   to  
𝜑(𝑎𝑘𝑥)

𝑏𝑘  ; 𝑎 ∈R;  𝑏 ∈R;   𝑏 > 𝑎 > 1 

• In definition of 𝜑(𝑥), change [𝑥] + √𝑥 − [𝑥] to   [𝑥] + √𝑥 − [𝑥]𝑛  ;      𝑛 ∈N;   𝑛 ≥ 2 

• In part III of proof, change   𝑥 =
𝒋

𝟐𝒎  to 𝑥 =
𝒋

𝒂𝒎   and change 0< ℎ <
1

2𝑚   to  0< ℎ <
1

𝑎𝑚  . 
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Proof: 

I. Let  𝑺𝒌(𝒙) =  
𝝋(𝒂𝒌𝒙)

𝒃𝒌 .    Prove that {𝑺𝒌(𝒙)} is a sequence of continuous functions on (𝟎, 𝑴): 

Since 1

𝑏𝑘 is continuous, we need only to examine the numerator: 

𝜑(𝑎𝑘𝑥) = [𝑎𝑘𝑥] + √𝑎𝑘𝑥 − [𝑎𝑘𝑥]𝑛  

Consider 𝜑(𝑡) = [𝑡] + √𝑡 − [𝑡]𝑛  ;        t ∈ R 

Now since the greatest integer function is continuous for all 𝑡, except possibly when 𝑡 ∈N, 

𝜑(𝑡) will be continuous for all 𝑡, except possibly when 𝑡 ∈N. 

So the only possible discontinuities for the function 𝜑(𝑡) might occur when 𝑡 ∈N.  So we 

will investigate this case: 

Let 𝑝 ∈ N. We need to investigate right and left limits of 𝜑(𝑡) as 𝑡 → 𝑝. 

𝑙𝑖𝑚
𝑡→𝑝+

 𝜑(𝑡) = 𝑙𝑖𝑚
𝑡→𝑝+

([𝑡] + √𝑡 − [𝑡]𝑛
) = 𝑝 + √𝑝 − 𝑝𝑛 = 𝑝 

 𝑙𝑖𝑚
𝑡→𝑝−

𝜑(𝑡) = 𝑙𝑖𝑚
𝑡→𝑝−

([𝑡] +  √𝑡 − [𝑡]𝑛
) = (𝑝 − 1) + √𝑝 − (𝑝 − 1)𝑛 = (𝑝 − 1)+ √1

𝑛 = 𝑝 

Since 𝑙𝑖𝑚
𝑡→𝑝+

 𝜑(𝑡) = 𝑙𝑖𝑚
𝑡→𝑝−

𝜑(𝑡) =  𝑝, then 𝜑(𝑡) is continuous on (0, ∞) for all t. 

Now 𝝋(𝒂𝒌𝒙) is the sum and composition of continuous functions, so it is continuous on (0,∞) 

Also 𝑺𝒌(𝒙) =  
𝝋(𝒂𝒌𝒙)

𝒃𝒌   is the quotient of continuous functions, so it is continuous on (0,∞) 

Therefore, {𝑆𝑘(𝑥)} is a sequence of continuous functions on (0, ∞). 

Therefore, {𝑆𝑘(𝑥)} is a sequence of continuous functions on (0, 𝑀). 

Furthermore, 𝜑(𝑝) = 𝑝 for all 𝑝 ∈ N. 

 

II. Prove that the series converges uniformly. 

Let 𝑥 ∈ R,  𝑥 ∈ (0, 𝑀).  

Then 𝑥 can be written as 𝑥 = 𝑝 + ℎ, where ℎ ∈ R,  ℎ ∈ (0, 1) and 𝑝 ∈ {N ∪ {0}} 

Then 𝜑(𝑝 + ℎ) = [𝑝 + ℎ] + √(𝑝 + ℎ) − [𝑝 + ℎ]𝑛  

                                =  𝑝 +  √(𝑝 + ℎ) −  𝑝𝑛  

                                =  𝑝 +  √ℎ
𝑛  

Now define 𝑞(ℎ) = 𝜑(𝑝 + ℎ) − (𝑝 + ℎ) 

                   So 𝑞(ℎ) =  𝑝 +  √ℎ
𝑛

 − 𝑝 − ℎ = √ℎ
𝑛

− ℎ = (ℎ)
1
𝑛 − ℎ 
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                   So 𝑞′(ℎ) =
1

𝑛
(ℎ)(

1
𝑛

−1) − 1 

We set 𝑞′(ℎ) = 0 to find critical points of 𝑞(ℎ): 

           Solving      1

𝑛
(ℎ)(

1
𝑛

−1) − 1 = 0: 

                                1

𝑛
(ℎ)(

1
𝑛

−1) = 1 

                                (ℎ)(
1
𝑛

−1) = 𝑛 

                                𝑙𝑛(ℎ)(
1
𝑛

−1) =  𝑙𝑛(𝑛) 

                                (1

𝑛
− 1) 𝑙𝑛 (ℎ) = 𝑙𝑛(𝑛) 

                                 𝑙𝑛(ℎ) =   𝑙𝑛(𝑛)
1

𝑛
−1

   =   𝑛∙𝑙𝑛(𝑛)

1−𝑛
 

                            So  ℎ = 𝑒(
𝑛∙𝑙𝑛(𝑛)

1−𝑛
)  = 𝑒(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)   is a critical point            

Next we find 𝑞"(ℎ) = (
1

𝑛
− 1) ∙

1

𝑛
∙ ℎ(

1
𝑛

− 2) = (
1−𝑛

𝑛2 ) (ℎ(
1

𝑛
 −2)) 

So 𝑞"(𝑒(
−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)) = (

1−𝑛

𝑛2 ) ((𝑒(
−𝑛∙𝑙𝑛(𝑛)

𝑛−1
))

(
1

𝑛
 −2)

)           This is negative since (1−𝑛

𝑛2
) < 0 and 𝑒𝑥 > 0 for all x. 

So when ℎ = 𝑒(
−𝑛∙𝑙𝑛(𝑛)

𝑛−1
) , 𝑞(ℎ) is concave down. Therefore, 𝑞(ℎ) reaches its maximum value at ℎ =  𝑒(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
) 

. 

So 𝑞(ℎ) ≤ 𝑞 (𝑒(
−𝑛∙𝑙𝑛(𝑛)

𝑛−1
) )   

Now 𝑞(ℎ) = 𝜑(𝑝 + ℎ) − (𝑝 + ℎ)     from above 

So 𝜑(𝑝 + ℎ) − (𝑝 + ℎ) ≤  𝑞 (𝑒
(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)
)      Substitution 

So 𝜑(𝑝 + ℎ) ≤ (𝑝 + ℎ) + 𝑞 (𝑒(
−𝑛∙𝑙𝑛(𝑛)

𝑛−1
) )    

Now we evaluate 𝑞 (𝑒(
−𝑛∙𝑙𝑛(𝑛)

𝑛−1
) )   : 

                                             𝑞 (𝑒(
−𝑛∙𝑙𝑛(𝑛)

𝑛−1
) )  =  (𝑒(

−𝑛∙𝑙𝑛(𝑛)
𝑛−1

) ) 
1

𝑛 − (𝑒(
−𝑛∙𝑙𝑛(𝑛)

𝑛−1
) )             from our definition of  𝑞(ℎ)  above 

                                                                                    = 𝑒(
−𝑙𝑛(𝑛)

𝑛−1
) − 𝑒(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)   
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Recall,   𝜑(𝑝 + ℎ) ≤ (𝑝 + ℎ) + 𝑞 (𝑒(
−𝑛∙𝑙𝑛(𝑛)

𝑛−1
) )     from above 

So 𝜑(𝑝 + ℎ) ≤ (𝑝 + ℎ) + 𝑒(
−𝑙𝑛(𝑛)

𝑛−1
) − 𝑒(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)              Substitute in for 𝑞 (𝑒

(
−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)
 ) 

Recall that 𝑥 = 𝑝 + ℎ    

So 𝜑(𝑥) ≤ 𝑥 + 𝑒(
−𝑙𝑛(𝑛)

𝑛−1
) − 𝑒(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)            Note that  𝑒(

−𝑙𝑛(𝑛)

𝑛−1
) − 𝑒(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
) > 0, 𝑠𝑖𝑛𝑐𝑒   𝑒(

−𝑙𝑛(𝑛)

𝑛−1
) > 𝑒(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)   

                                                                                                              Also, 𝑒(
−𝑙𝑛(𝑛)

𝑛−1
) < 1 for 𝑛 > 1  . So  0 < 𝑒(

−𝑙𝑛(𝑛)

𝑛−1
) − 𝑒(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)

< 1 

So 𝜑(𝑎𝑘𝑥) ≤  (𝑎𝑘𝑥) + 𝑒(
−𝑙𝑛(𝑛)

𝑛−1
) − 𝑒(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)     Substitute 𝑎𝑘𝑥 for 𝑥 in above 

So 𝜑(𝑎𝑘𝑥)

𝑏𝑘    ≤  
(𝑎𝑘𝑥) + 𝑒

(
−𝑙𝑛(𝑛)

𝑛−1
)
 − 𝑒

(
−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)

𝑏
𝑘               Since 𝑏𝑘 is positive, we can divide each side by 𝑏𝑘  

So |𝜑(𝑎𝑘𝑥)

𝑏𝑘    | ≤   
(𝑎𝑘𝑥) + 𝑒

(
−𝑙𝑛(𝑛)

𝑛−1
)

 − 𝑒
(

−𝑛∙𝑙𝑛(𝑛)
𝑛−1

)

𝑏𝑘              Since 
𝜑(𝑎𝑘𝑥)

𝑏𝑘    > 0 

                     

                                   =   (
𝑎

𝑏
)

𝑘

𝑥 +
𝑒

(
−𝑙𝑛(𝑛)

𝑛−1
)

 − 𝑒
(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)

𝑏𝑘  

                                      

                                            <  (
𝑎

𝑏
)

𝑘

𝑀 +  
𝑒

(
−𝑙𝑛(𝑛)

𝑛−1
)

 − 𝑒
(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)

𝑏𝑘                      since  𝑥 < 𝑀 

So for all 𝑘,  |𝜑(𝑎𝑘𝑥)

𝑏𝑘
| <  (

𝑎

𝑏
)

𝑘

𝑀 +
1

𝑏𝑘 (𝑒(
−𝑙𝑛(𝑛)

𝑛−1
)  −  𝑒(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)) = 𝑀𝑘 

So each term of {𝑆𝑘(𝑥)} = {
𝜑(𝑎𝑘𝑥)

𝑏𝑘
} is bounded above by 𝑀𝑘 = (𝑎

𝑏
)

𝑘

𝑀 +
1

𝑏𝑘 (𝑒
(

−𝑙𝑛(𝑛)

𝑛−1
)

 −  𝑒
(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
)
). 

Now consider ∑ 𝑀𝑘 =∞
𝑘=0 ∑ { (

𝑎

𝑏
)

𝑘

𝑀 +
1

𝑏𝑘 (𝑒
(

−𝑙𝑛(𝑛)

𝑛−1
)

 −  𝑒
(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
))}∞

𝑘=0   

                                                  = ∑  (
𝑎

𝑏
)

𝑘

𝑀∞
𝑘=0   + ∑ 1

𝑏𝑘 (𝑒
(

−𝑙𝑛(𝑛)

𝑛−1
)

 −  𝑒
(

−𝑛∙𝑙𝑛(𝑛)

𝑛−1
))∞

𝑘=0  

                                                      < ∑  (
𝑎

𝑏
)

𝑘

𝑀∞
𝑘=0  + ∑ 1

𝑏𝑘 (1)∞
𝑘=0           See above for explanation of substitution made 

This is the sum of 2 geometric series, each with 𝑟 < 1, so it converges.  

Therefore, ∑ 𝑀𝑘
∞
𝑘=0  converges. 

Therefore, ∑ 𝜑(𝑎𝑘𝑥)

𝑏𝑘
∞
𝑘=0  converges uniformly on (0,M) to 𝑆(𝑥) by the Weierstrass-M Test. 
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Define {𝑓𝑖} =  {∑
𝜑(𝑎𝑘𝑥)

𝑏𝑘
𝑖
𝑘=1 }

𝑖=1

∞

 to be the sequence of partial sums of 𝑆(𝑥). 

Then {𝑓𝑖} converges uniformly on (0,M) to 𝑆(𝑥), since the corresponding series converges 
uniformly on (0,M) to 𝑆(𝑥). 
Also, each 𝑓𝑖(𝑥) is the sum of continuous functions, it is also continuous.                                           

Therefore, since {𝑓𝑖 (𝑥)} is a sequence of continuous functions on (0, 𝑀) which 

converges uniformly  to 𝑆(𝑥),  we can conclude that 𝑆(𝑥) is continuous on (0, 𝑀).  

(See theorem  IV in Background Information) 

 

III. Show that 𝑺 is not differentiable on a dense subset of (𝟎, 𝑴): 

Let 𝑥𝑜 and   𝑥1 ∈ (0, 𝑀). 𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦, 𝑙𝑒𝑡 𝑥𝑜 < 𝑥1 

We want to show that there is an 𝑥  (𝑥𝑜 < 𝑥 < 𝑥1) , such that 𝑆′(𝑥) does not exist. 

 

Proof: 

Let 𝑚 ∈N.  

Then since 𝑥1 > 𝑥𝑜 ,      𝑎𝑚𝑥1 >   𝑎𝑚𝑥𝑜           Since a is positive 

Since 𝑎 > 1, there is a 𝑚 ∈N, such that  𝑎𝑚 >
1

𝑥1−𝑥𝑜
  

So 𝑎𝑚(𝑥1 − 𝑥𝑜) > 1 

So 𝑎𝑚𝑥1 − 𝑎𝑚𝑥𝑜 > 1 

Therefore, there is some integer j such that 𝑎𝑚𝑥𝑜 < 𝑗 <   𝑎𝑚𝑥1  

Therefore, 𝑎
𝑚𝑥𝑜

𝑎𝑚  < 𝑗

𝑎𝑚 < 𝑎𝑚𝑥1

𝑎𝑚          Dividing each term by 𝑎𝑚  

Therefore 𝑥𝑜 <
𝑗

𝑎𝑚  < 𝑥1         Simplifying 

Now fix   𝑥 =
𝒋

𝒂𝒎 such that 𝑥𝑜 < 𝑥 < 𝑥1 and 𝑗, 𝑚 ∈N.    (We have just shown that such an 𝑥 exists.) 

So 𝑥 = 𝑗 ∙ 𝑎−𝑚 .  Fix ℎ such that 0< ℎ <
1

𝑎𝑚  and  ℎ ∈ R 

Consider 𝑆(𝑥+ℎ)−𝑆(𝑥)

ℎ
 = ∑

𝜑(𝑎𝑛(𝑥+ℎ))−𝜑(𝑎𝑛𝑥)

𝑏𝑛ℎ

∞
𝑛=0  

                                           ≥ 𝜑(𝑎𝑚(𝑥+ℎ))−𝜑(𝑎𝑚𝑥)

𝑏𝑚ℎ
      since each term in the series is non-negative,  the series ≥  one term 

From how we defined 𝒋 and 𝒉 above, we can derive:    

𝑎𝑚𝑥 = 𝑗 𝑓𝑜𝑟 𝑗 ∈N   and 𝑎𝑚ℎ < 1 
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Therefore, [𝑎𝑚𝑥 + 𝑎𝑚ℎ] = [𝑎𝑚𝑥]= j 

 

So 𝜑(𝑎𝑚(𝑥 + ℎ)) − 𝜑(𝑎𝑚𝑥) = 

= 𝜑 (𝑎𝑚𝑥 + 𝑎𝑚ℎ) − 𝜑(𝑎𝑚𝑥) 

= [𝑎𝑚𝑥 + 𝑎𝑚ℎ] + √(𝑎𝑚𝑥 + 𝑎𝑚ℎ) − [𝑎𝑚𝑥 + 𝑎𝑚ℎ]𝑛  −[𝑎𝑚𝑥] − √𝑎𝑚𝑥 − [𝑎𝑚𝑥]𝑛  

= 𝑗 + √𝑗 + 𝑎𝑚ℎ − 𝑗𝑛 − 𝑗 − √𝑗 − 𝑗𝑛  = √𝑎𝑚ℎ
𝑛  

 

Now  𝑆(𝑥+ℎ)−𝑆(𝑥)

ℎ
 ≥ 𝜑(𝑎𝑚(𝑥+ℎ))−𝜑(𝑎𝑚𝑥)

𝑏𝑚ℎ
          from a previous step 

                                 = √𝑎𝑚ℎ
𝑛

𝑏𝑚ℎ
      Substitute in for 𝜑 (𝑎𝑚𝑥 + 𝑎𝑚ℎ) − 𝜑(𝑎𝑚𝑥) 

 

                              =  
𝑎𝑚ℎ

(𝑏𝑚ℎ)( √(𝑎𝑚ℎ)(𝑛−1)𝑛
)
 = 𝑎𝑚

(𝑏𝑚)( √(𝑎𝑚ℎ)(𝑛−1)𝑛
)
 

                                = 𝑎𝑚

(𝑏𝑚)( √(𝑎𝑚)(𝑛−1)𝑛
)

∙
1

√ℎ(𝑛−1)𝑛  

So 𝑙𝑖𝑚
ℎ→0

𝑆(𝑥+ℎ)−𝑆(𝑥)

ℎ
 ≥  𝑙𝑖𝑚

ℎ→0
  ( 𝑎𝑚

(𝑏𝑚)( √(𝑎𝑚)(𝑛−1)𝑛
)

∙
1

( √ℎ𝑛−1𝑛
)
) = ∞      since 𝑎𝑚

(𝑏𝑚)( √(𝑎𝑚)(𝑛−1)𝑛
)
  is fixed 

                                                                                                                                                             and as h→ 0, √ℎ𝑛−1𝑛
→ 0, so 1

( √ℎ𝑛−1𝑛
)

→ ∞ 

                                                                                                                                                                 

Therefore, 𝑆′(𝑥)𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡, 𝑎𝑛𝑑  𝑆  is non-differentiable on a dense subset of (0, 𝑀). 
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Chapter 3 
The Schoenberg Functions: Sagan’s Proof and Generalization 

     In 1938, Isaac Schoenberg, a Romanian mathematician, extended the work done by 

Henri Lebesgue to construct two space-filling functions, 𝜑𝑠(𝑥) and 𝜓𝑠(𝑥).  (A space-filling 

function is a mapping of a line or 1-dimensional curve to every point in a 2-dimensional 

space.) Schoenberg proved that his functions are continuous. In 1992, Hans Sagan proved 

that these functions are also not differentiable on the closed interval [0,1], except possibly 

when   𝑥 =
𝑎1

91 +
𝑎2

92 + ⋯ +
𝑎𝑚

9𝑚     for some 𝑚;   𝑎𝑖 = {0, 1, 2, … 8}. Sagan’s proof is given below: 

 
Theorem: Schoenberg’s two functions, 𝝋𝒔(𝒙) and 𝝍𝒔(𝒙) , defined below, are 

continuous and not differentiable on [𝟎, 𝟏], except possibly when: 

                   𝑥 =
𝑎1

91 +
𝑎2

92 + ⋯ +
𝑎𝑚

9𝑚     for some 𝑚;   𝑎𝑖 = {0, 1, 2, … 8} 

         𝝋𝒔(𝒙)=𝟏

𝟐
∑

𝟏

𝟐𝒌 𝒑(𝟑𝟐𝒌𝒙)∞
𝒌=𝟎  = 𝟏

𝟐
∑

𝟏

𝟐𝒌 𝒑(𝟗𝒌𝒙)∞
𝒌=𝟎  and 

         𝝍𝒔(𝒙) = 𝟏
𝟐

∑
𝟏

𝟐𝒌 𝒑(𝟑𝟐𝒌+𝟏𝒙)∞
𝒌=𝟎 = 𝟏

𝟐
∑

𝟏

𝟐𝒌 𝒑(𝟑𝟐𝒌 ∙ 𝟑𝒙)∞
𝒌=𝟎  = 𝝋𝒔(𝟑𝒙) 

where 

          𝒑(𝒙) =  0                       𝒙 ∈  [𝟎,
𝟏

𝟑
] 

          𝒑(𝒙) =  𝟑𝒙 − 𝟏           𝒙 ∈  [
𝟏

𝟑
,

𝟐

𝟑
] 

          𝒑(𝒙) =  1                       𝒙 ∈ [
𝟐

𝟑
,

𝟒

𝟑
] 

          𝒑(𝒙) =  𝟓 − 𝟑𝒙            𝒙 ∈ [
𝟒

𝟑
,

𝟓

𝟑
] 

          𝒑(𝒙) =  0                       𝒙 ∈  [
𝟓

𝟑
, 𝟐] 

and 𝒑(𝒙 + 𝟐) = 𝒑(𝒙), for all 𝑥 ∈ R 
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Graph of Schoenberg’s  𝑝  function (from Hans Sagan, as cited below) 

Note: 

If l is an odd integer, and 𝑥 ∈ (𝑙 −
1

3
, 𝑙 +

1

3
  ), then 𝑝(𝑥) = 1 

If l is an even integer, and 𝑥 ∈ (𝑙 −
1

3
, 𝑙 +

1

3
  ), then 𝑝(𝑥) = 0 

 

Proof: 

I. Show that φs(𝑥) is continuous on [0,1] 

Let {𝑠𝑘(𝑥)} = { 1

2𝑘 𝑝(9𝑘𝑥)}        𝑘 ∈N        

𝑇ℎ𝑒𝑛 |
1

2𝑘 𝑝(9𝑘𝑥)| ≤ 1

2𝑘    for each 𝑘         (since 0≤ 𝑝(9𝑘𝑥) ≤ 1) 

So each term in the sequence is bounded above by  1

2𝑘 .   

We know that ∑ 1

2𝑘  ∞
𝑘=0 is an infinite geometric series with r< 1, and so it converges. 

Since the series of upper bounds converges, then by the Weierstrass-M test, 

∑
1

2𝑘  𝑝(9𝑘𝑥) ∞
𝑘=0  converges uniformly on [0,1]. 

Therefore, 
1

2
∑

1

2𝑘 𝑝(9𝑘𝑥)∞
𝑘=0  also converges uniformly on [0,1] to 𝜑𝑠(𝑥). 

Now define {𝑓𝑛} = {
1

2
∑ 𝑠𝑖(𝑥)𝑛

𝑖=1 }
𝑛=1

∞

 to be the sequence of partial sums of 𝜑𝑠(𝑥). 

Then {𝑓𝑛} converges uniformly on [0,1] to 𝜑𝑠(𝑥) since the corresponding series converges 

uniformly to 𝜑𝑠(𝑥). 

Note that  each 𝑠𝑘(𝑥) =
1

2𝑘 𝑝(9𝑘𝑥) is the product and composition of continuous functions, 

and therefore it is continuous. 

So each 𝑓𝑛(𝑥)is the sum of continuous functions, so it is continuous. 
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Since {𝑓𝑛} is a sequence of continuous functions which converges uniformly on [0,1] to 

𝜑𝑠(𝑥), we can conclude that: 

       𝜑𝑠(𝑥)= 1
2

∑
1

2𝑘 𝑝(9𝑘𝑥)∞
𝑘=0   is continuous on [0,1].    See IV in Background Information. 

Similarly, 𝜓𝑠(𝑥) is also continuous on [0,1]. 

 

II. Show that 𝜑𝑠(𝑥) is not differentiable on (0,1), except possibly when: 

                        𝑥 =
𝑎1

91 +
𝑎2

92 + ⋯ +
𝑎𝑚

9𝑚     for some 𝑚;   𝑎𝑖 = {0, 1, 2, … 8} 

(Proof by contradiction) 

Let 𝑡 ∈ (0,1).  Assume that 𝜑′𝑠(𝑡) exists. 

Then by a previous lemma (VII     in Background Information), 

if 0 < 𝑎𝑛 < 𝑡 < 𝑏𝑛 < 1, and  𝑎𝑛 → 𝑡 as n→ ∞,  and 𝑏𝑛 → 𝑡 as n→ ∞,  then 

                                          lim 
𝑛→∞

𝜑𝑠(𝑏𝑛)−𝜑𝑠(𝑎𝑛)

𝑏𝑛−𝑎𝑛
 = 𝜑′𝑠(𝑡) 

We will construct 2 sequences, {𝑎𝑛} and {𝑏𝑛} which contradict our assumption: 

Let 𝑘�̂� = [9𝑛𝑡]           where [𝑥]=the integer part of 𝑥, and 𝑡 not of the form: 

          𝑎1

91 +
𝑎2

92 + ⋯ +
𝑎𝑚

9𝑚     for some 𝑚;   𝑎𝑖 = {0, 1, 2, … 8} 

Note: This restriction on the form of 𝑡 is required so that [9𝑛𝑡] is always strictly less than 9𝑛𝑡. 

 

Let 𝑎�̂�  = 𝑘�̂� ∙ 9−𝑛 = [9𝑛𝑡](9−𝑛) 

Let 𝑏�̂�  = 𝑘�̂� ∙ 9−𝑛 + 9−𝑛  = [9𝑛𝑡](9−𝑛) + 9−𝑛  

So there are either infinitely many 𝑘�̂� which are odd or infinitely many 𝑘�̂� which are even. 

 

Case i: There are infinitely many even 𝑘�̂�  

Let {𝑘𝑛} be a subsequence of {𝑘�̂� } such that 𝑘𝑛 is even. 

Let {𝑎𝑛} and {𝑏𝑛} be the corresponding sequences. 

𝜑𝑠(𝑏𝑛) − 𝜑𝑠(𝑎𝑛) = 1
2
 ∑ 1

2𝑘 ∙ 𝑝(9𝑘𝑏𝑛)∞
𝑘=0  − 1

2
 ∑ 1

2𝑘 ∙ 𝑝(9𝑘𝑎𝑛)∞
𝑘=0  

                                  = 1
2
 ∑ 1

2𝑘 ∙ 𝑝(9𝑘(𝑘𝑛9−𝑛 + 9−𝑛))∞
𝑘=0  − 1

2
 ∑ 1

2𝑘 ∙ 𝑝(9𝑘𝑘𝑛9−𝑛)∞
𝑘=0  
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                                  = 1
2
 ∑ 1

2𝑘 ∙ 𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛)∞
𝑘=0  − 1

2
 ∑ 1

2𝑘 ∙ 𝑝(9𝑘−𝑛𝑘𝑛)∞
𝑘=0  

                                  = 1
2
 ∑ 1

2𝑘 ∙∞
𝑘=0  (𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛))  Now, express this as 2 sums: 

= 1
2

 ∑ 1

2𝑘
𝑛−1
𝑘=0  (𝑝(9𝑘−𝑛𝑘𝑛 + 9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛)) +  1

2
 ∑ 1

2𝑘 ∙∞
𝑘=𝑛  (𝑝(9𝑘−𝑛𝑘𝑛 + 9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛)) 

= 𝑀1+ 𝑀2 

 

Now we will get a lower bound for 𝑀1+ 𝑀2: 

First find a lower bound for 𝑀1   (𝑘 < 𝑛): 

Recall, given a linear function and 2 ordered pairs (𝑥1,𝑦1) and (𝑥2,𝑦2) which satisfy the function: 

𝑦2 − 𝑦1 = 𝑚(𝑥2 − 𝑥1) 

In a step-wise linear function,  if 𝑥2 > 𝑥1, then   𝑦2 − 𝑦1  attains its least value when m is the smallest  
       and (𝑥2 − 𝑥1) is the largest in that step. 
Note that the smallest possible value of 𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛) occurs when both (9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛)  

and   (9𝑘−𝑛𝑘𝑛)  lie in the interval when 𝑝(𝑥) = 5 − 3𝑥, where the slope is at its least value (−3). 

 

So the smallest value occurs when     𝑝(9𝑘−𝑛𝑘𝑛+ 9𝑘−𝑛)−𝑝(9𝑘−𝑛𝑘𝑛) 

9𝑘−𝑛  = −3 

So the smallest value occurs when       𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛) = −3(9𝑘−𝑛) 

So 𝑀1 = 1
2

 ∑ 1

2𝑘
𝑛−1
𝑘=0  (𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛))      from above 

              ≥ 1
2
 ∑ 1

2𝑘
𝑛−1
𝑘=0 (−3)(9𝑘−𝑛)    substituting in the smallest value for  𝑝(9𝑘−𝑛𝑘𝑛 + 9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛) 

             = −3

2
 ∑ 1

2𝑘
𝑛−1
𝑘=0 (9𝑘−𝑛) 

             = −3

2
 ∑ (

9

2
)

𝑘
𝑛−1
𝑘=0

1

9𝑛 

            = −3

2∙9𝑛 ∑ (
9

2
)

𝑘
𝑛−1
𝑘=0          This is a finite geometric series, which we sum in the next step. 

           = −3

2∙9𝑛 (
1−(

9

2
)

𝑛

1−(
9

2
)

)      Using algebra, we get the next step: 

          = −3

7∙9𝑛 ((
9

2
)

𝑛

−  1)       This is a Lower Bound for 𝑀1 
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Now we find a simplified expression for 𝑀2 (𝑘 ≥ 𝑛): 

𝑀2= 1
2
 ∑ 1

2𝑘 ∙∞
𝑘=𝑛  (𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛)) 

Consider (9𝑘−𝑛𝑘𝑛). This is the product of an odd number and an even number, and so it is 
even. So 𝑝(9𝑘−𝑛𝑘𝑛)=0. 
Consider  (9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛). This is the sum of an even number and an odd number, and so 
it is odd. So 𝑝(9𝑘−𝑛𝑘𝑛 + 9𝑘−𝑛)= 1. 
 

So 𝑀2= 1
2
 ∑ 1

2𝑘
∞
𝑘=𝑛 (1 − 0)        Substituting in for 𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛) and 𝑝(9𝑘−𝑛𝑘𝑛) in above equation 

             = 1
2
 ∑ 1

2𝑘
∞
𝑘=𝑛 =  1

2
(

1

2𝑛−1) = 1

2𝑛        Calculating the sum of an infinite series,  r< 1 

So 𝑀2 = 1

2𝑛     

Now consider  𝜑𝑠(𝑏𝑛)−𝜑𝑠(𝑎𝑛)

𝑏𝑛 −𝑎𝑛
 = 𝑀1+𝑀2

9−𝑛  

                                                          = 9𝑛(𝑀1 + 𝑀2)       

                                                        ≥ 9𝑛 (
−3

7∙9𝑛  ((
9

2
)

𝑛

−  1) +
1

2𝑛  )  substituting in the LB for 𝑀1 and 𝑀2 

                                                         =  3
7

  + 4
7

(
9

2
)

𝑛

  This diverges to ∞ as 𝑛 → ∞. 

So lim
𝑛→∞

𝜑𝑠(𝑏𝑛)−𝜑𝑠(𝑎𝑛)

𝑏𝑛 −𝑎𝑛
 does not exist when 𝑘�̂� is even and 𝑥 ∈ (0,1), except possibly when 

                     𝑥 =
𝑎1

91 +
𝑎2

92 + ⋯ +
𝑎𝑚

9𝑚     for some 𝑚;   𝑎𝑖 = {0, 1, 2, … 8} 

Therefore, 𝜑′𝑠(𝑡) does not exist when 𝑘�̂� is even, for  𝑥 ∈ (0,1), except possibly when 

                           𝑥 =
𝑎1

91 +
𝑎2

92 + ⋯ +
𝑎𝑚

9𝑚     for some 𝑚;   𝑎𝑖 = {0, 1, 2, … 8} 

 

Case ii: There are infinitely many odd 𝑘�̂�  

Let {𝑘𝑛} be a subsequence of {𝑘�̂� } such that 𝑘𝑛 is odd. 

Let {𝑎𝑛} and {𝑏𝑛} be the corresponding sequences. 
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𝜑𝑠(𝑏𝑛) - 𝜑𝑠(𝑎𝑛) = 1
2
 ∑ 1

2𝑘 ∙ 𝑝(9𝑘𝑏𝑛)∞
𝑘=0  − 1

2
 ∑ 1

2𝑘 ∙ 𝑝(9𝑘𝑎𝑛)∞
𝑘=0  

                              = 1
2
 ∑ 1

2𝑘 ∙ 𝑝(9𝑘(𝑘𝑛9−𝑛 + 9−𝑛))∞
𝑘=0  − 1

2
 ∑ 1

2𝑘 ∙ 𝑝(9𝑘𝑘𝑛9−𝑛)∞
𝑘=0   Sub in values for 𝑏𝑛  & 𝑎𝑛 

                              = 1
2
 ∑ 1

2𝑘 ∙ 𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛)∞
𝑘=0  − 1

2
 ∑ 1

2𝑘 ∙ 𝑝(9𝑘−𝑛𝑘𝑛)∞
𝑘=0    using algebra 

                              = 1
2
 ∑ 1

2𝑘 ∙∞
𝑘=0  (𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛))    combining into 1 series 

= 1
2

 ∑ 1

2𝑘
𝑛−1
𝑘=0  (𝑝(9𝑘−𝑛𝑘𝑛 + 9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛)) +  1

2
 ∑ 1

2𝑘 ∙∞
𝑘=𝑛  (𝑝(9𝑘−𝑛𝑘𝑛 + 9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛)) 

= 𝑀1+ 𝑀2 

Now we will get an upper bound for 𝑀1+ 𝑀2: 

First find an upper bound for 𝑀1  (𝑘 < 𝑛): 
Note that the largest possible value of 𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛) occurs when both 
9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛  and   9𝑘−𝑛𝑘𝑛  lie in the interval when 𝑝(𝑥) = 3𝑥 + 1, where the slope is greatest (3). 
(See explanation provided above for lower bound.) 
 

So the largest value occurs when   𝑝(9𝑘−𝑛𝑘𝑛+ 9𝑘−𝑛)−𝑝(9𝑘−𝑛𝑘𝑛) 

9𝑘−𝑛  = 3 

So the largest value occurs when     𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛) = 3(9𝑘−𝑛) 

From above, 𝑀1= 1
2
 ∑ 1

2𝑘 ∙𝑛−1
𝑘=0  (𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛)) 

                               ≤ 1
2
 ∑ 1

2𝑘 ∙𝑛−1
𝑘=0 3(9𝑘−𝑛)   Substituting in the UB for 𝑝(9𝑘−𝑛𝑘𝑛 + 9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛) 

                                  = 3
2
 ∑ 1

2𝑘 ∙𝑛−1
𝑘=0 (9𝑘−𝑛) 

                                  = 3
2
 ∑ (

9

2
)

𝑘 1

9𝑛
𝑛−1
𝑘=0  

                                 = 3

2∙9𝑛 ∑ (
9

2
)

𝑘
𝑛−1
𝑘=0     This is a finite geometric series, which we sum in the next step: 

                                    =  
3

2∙9𝑛 [
1−(

9

2
)

𝑛

1−
9

2

]        Use algebra to get the next step: 

                                 = 3

7∙9𝑛 ((
9

2
)

𝑛

− 1)       This is an Upper Bound for 𝑀1 
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Now we find a simplified expression for 𝑀2 (𝑘 ≥ 𝑛): 

Consider (9𝑘−𝑛𝑘𝑛). This is the product of an odd number and an odd number, and so it is 
odd. So 𝑝(9𝑘−𝑛𝑘𝑛)=1. 
Consider  (9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛). This is the sum of an odd number and an odd number, and so it 
is even. So 𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛)= 0. 
 

So 𝑀2= 1
2
 ∑ 1

2𝑘 ∙∞
𝑘=𝑛  (𝑝(9𝑘−𝑛𝑘𝑛 +  9𝑘−𝑛) − 𝑝(9𝑘−𝑛𝑘𝑛)) 

              = 1
2
 ∑ 1

2𝑘
∞
𝑘=𝑛 (0 − 1)  

              = 1
2
 ∑ −1

2𝑘
∞
𝑘=𝑛   This is an infinite geometric series, r<1 which we sum below 

                 = 1
2
 [

−
1

2𝑛

1−
1

2

] 

            =   −1

2𝑛      

So 𝑀2 = −1

2𝑛      

Now consider 𝜑𝑠(𝑏𝑛)−𝜑𝑠(𝑎𝑛)

𝑏𝑛 − 𝑎𝑛
 = 𝑀1+𝑀2

9−𝑛  

                                                          = 9𝑛(𝑀1 + 𝑀2)    Next we substitute in values for 𝑀2 and an UB for 𝑀1 

                                                          ≤ 9𝑛 (
3

7∙9𝑛  ((
9

2
)

𝑛

−  1)  +
−1

2𝑛    )    Use algebra to get the next step 

                                                         =   −4

7
(

9

2
)

𝑛

−
3

7
        This diverges to  −∞ as 𝑛 → ∞. 

So lim
𝑛→∞

𝜑𝑠(𝑏𝑛)−𝜑𝑠(𝑎𝑛)

𝑏𝑛 − 𝑎𝑛
 does not exist when  𝑘�̂� odd and 𝑥 ∈ (0,1), except possibly when 

                  𝑥 =
𝑎1

91 +
𝑎2

92 + ⋯ +
𝑎𝑚

9𝑚     for some 𝑚;   𝑎𝑖 = {0, 1, 2, … 8} 

Therefore, 𝜑′𝑠(𝑡) does not exist when 𝑘�̂� is odd and  𝑥 ∈ (0,1), except possibly when 

                  𝑥 =
𝑎1

91 +
𝑎2

92 + ⋯ +
𝑎𝑚

9𝑚     for some 𝑚;   𝑎𝑖 = {0, 1, 2, … 8} 

Therefore, 𝜑′
𝑠
(𝑡) does not exist for 𝑥 ∈ (0,1), except possibly when 

                 𝑥 =
𝑎1

91 +
𝑎2

92 + ⋯ +
𝑎𝑚

9𝑚     for some 𝑚;   𝑎𝑖 = {0, 1, 2, … 8} 
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Therefore, 𝜑𝑠(𝑥)  is not differentiable on (0,1), except possibly when 

                 𝑥 =
𝑎1

91 +
𝑎2

92 + ⋯ +
𝑎𝑚

9𝑚     for some 𝑚;   𝑎𝑖 = {0, 1, 2, … 8} 

Since  𝜓𝑠(𝑥) = 𝜑𝑠(3𝑥),  we can conclude that 𝜓𝑠(𝑥)  is not differentiable on (0,1), 

except possibly when 𝑥 =
𝑎1

91 +
𝑎2

92 + ⋯ +
𝑎𝑚

9𝑚    for some 𝑚;   𝑎𝑖 = {0, 1, 2, … 8}. 

 

III. Show that 𝜑𝑠(𝑥) is not differentiable when 𝑡 = 0: 

For this proof,  we construct a sequence {ℎ𝑛} and show that  

                                         lim
ℎ𝑛→0

𝜑𝑠(ℎ𝑛)−𝜑𝑠(0)

ℎ𝑛−0
 =  lim

𝑛→∞

𝜑𝑠(ℎ𝑛)−𝜑𝑠(0)

ℎ𝑛−0
     does not exist 

 

𝑁𝑜𝑡𝑒: 𝜑(0) =  
1

2
∑

1

2𝑘 𝑝(9𝑘 ∙ 0)∞
𝑘=0 = 1

2
 ∑ 1

2𝑘 (0)∞
𝑘=0 = 0 

Let {ℎ𝑛} = { 1

9𝑛
}                                                                           ( So ℎ𝑛 →0 as 𝑛 → ∞) 

𝜑𝑠(ℎ𝑛) = 𝜑𝑠 (
1

9𝑛) = 𝜑𝑠(9−𝑛) 

             =1

2
 ∑ 1

2𝑘  𝑝(9𝑘 ∙ 9−𝑛)∞
𝑘=0  

             =1

2
 ∑ 1

2𝑘  𝑝(9𝑘−𝑛)∞
𝑘=0  

             = 1
2
 ∑ 1

2𝑘  𝑝(9𝑘−𝑛)𝑛−1
𝑘=0  + 1

2
 ∑ 1

2𝑘  𝑝(9𝑘−𝑛)∞
𝑘=𝑛            Note: if 𝑘 < 𝑛,  9𝑘−𝑛 ≤

1

9
, so 𝑝(9𝑘−𝑛) = 0 

                = 
1

2
 ∑ 1

2𝑘  𝑝(9𝑘−𝑛)∞
𝑘=𝑛        Note: 9𝑘−𝑛 is odd for 𝑘 ≥ 𝑛 as it is a positive integer power of 9, so 𝑝(9𝑘−𝑛)=1 

                = 
1

2
 ∑ 1

2𝑘
∞
𝑘=𝑛 (1)         This is the sum of an infinite geometric series, r< 1 

             = 1

2𝑛                           Summing the series and multiplying by 1/2 

So 𝜑𝑠(ℎ𝑛)−𝜑𝑠(0)

ℎ𝑛−0
 = 

1

2𝑛 − 0

1

9𝑛 
 −0

 =(
9

2
)

𝑛

                         which diverges to ∞ as 𝑛 → ∞. 

Therefore, 𝜑′𝑠(0) does not exist. Similarly,  𝜓′𝑠(0) does not exist. 
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IV. Show that 𝜑𝑠(𝑥) and 𝜓𝑠(𝑥) are not differentiable when 𝑡=1: 

For this proof, we construct a sequence {𝑔𝑛} and show that: 

                              𝑙𝑖𝑚
𝑔𝑛→1

𝜑𝑠(𝑔𝑛)−𝜑𝑠(1)

𝑔𝑛−1
= 𝑙𝑖𝑚

𝑛→∞

𝜑𝑠(𝑔𝑛)−𝜑𝑠(1)

𝑔𝑛−1
     does not exist 

 

𝜑𝑠(1)= 1
2
 ∑ 1

2𝑘  
𝑝(9𝑘 ∙ 1)∞

𝑘=0  = 1
2
 ∑ 1

2𝑘  
𝑝(9𝑘)∞

𝑘=0                  Note: 𝑝(9𝑘) = 1 since 9𝑘 is odd. 

           =  1
2
 ∑ 1

2𝑘  
(1) =

1

2
(2) = 1∞

𝑘=0                            Summing up the infinite geometric series 

 

Let {𝑔𝑛} = {1 −  
1

9𝑛 }                                                         ( So 𝑔𝑛 →1 as n→ ∞) 

𝜑𝑠(𝑔𝑛) = 𝜑𝑠(1 −  
1

9𝑛 ) 

               = 1
2
 ∑ 1

2𝑘  
𝑝(9𝑘(1 −  

1

9𝑛 ))∞
𝑘=0         Use algebra to get the next step 

                = 1
2
 ∑ 1

2𝑘  
𝑝(9𝑘  − 9𝑘−𝑛)∞

𝑘=0          

               =  1
2
 ∑ 1

2𝑘 
𝑝(9𝑘  − 9𝑘−𝑛)𝑛−1

𝑘=0   +   1
2
 ∑ 1

2𝑘 
𝑝(9𝑘  − 9𝑘−𝑛)∞

𝑘=𝑛       express the above as 2 sums 

Note: 𝑝(9𝑘  − 9𝑘−𝑛) = 1 for 𝑘 < 𝑛, since (9𝑘  − 9𝑘−𝑛) is the difference of an odd number and a fraction ≤ 1

9
   

  and  𝑝(9𝑘  − 9𝑘−𝑛) = 0 for 𝑘 ≥ 𝑛, since (9𝑘  − 9𝑘−𝑛) is the difference of 2 odd numbers, which is an even number 

 

               = 1
2

∑
1

2𝑘 

𝑛−1
𝑘=0  (1) + 1

2
∑

1

2𝑘 

𝑛−1
𝑘=0  (0) 

              = 1
2

∑
1

2𝑘  

𝑛−1
𝑘=0      This is a finite geometric series 

              = 1

2
(

1−((
1

2
)

𝑛
)

1−
1

2

) 

               = 1 − 1

2𝑛 

So   𝜑𝑠(𝑔𝑛)−𝜑𝑠(1)

𝑔𝑛−1
 = 

(1−
1

2𝑛)−1

(1−
1

9𝑛)−1
 = (9

2
)

𝑛

          which diverges to ∞ as 𝑛 → ∞. 

Therefore, 𝜑′𝑠(1) does not exist. 
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Similarly, 𝜓′𝑠(1) does not exist.    

Therefore, 𝜑′𝑠(𝑥) and  𝜓′𝑠(𝑥) do not exist for 𝑥 ∈ [0,1], except possibly when 

             𝑥 =
𝑎1

91 +
𝑎2

92 + ⋯ +
𝑎𝑚

9𝑚     for some 𝑚;   𝑎𝑖 = {0, 1, 2, … 8} 

Therefore, Schoenberg’s two functions, 𝜑𝑠(𝑥) and 𝜓𝑠(𝑥) , as defined above, are continuous 

and not differentiable on [0,1],  except possibly when 

                    𝑥 =
𝑎1

91 +
𝑎2

92 + ⋯ +
𝑎𝑚

9𝑚     for some 𝑚;   𝑎𝑖 = {0, 1, 2, … 8} 

 

Note: The above proof was adapted from the proofs found in the following documents:  
!1). Ryder,J. (2011). The Schoenberg Functions. Word Press. Retrieved April 1, 2024, from 
https://caicedoteaching.wordpress.com/wp-content/uploads/2012/01/schoenberg_functions_ryder.pdf.  
(2). Sagan,H.(1992). Space-filling Curves. New York. Springer-Verlag. 
(3)  Thim, J. (2003).  Continuous Nowhere Differentiable Functions (2003:320 CIV). [Master’s Thesis, Lulea University of 
Technology]. 
I have expanded the proof to provide more in-depth proofs of several of the steps. 
 
 

Generalization of Proof 

    I have generalized the Schoenberg functions by making the following changes to the 𝒑 

function, and then proven that these generalized Schoenberg functions are continuous and 

not differentiable on [0,1] , with the possible exception as cited below. 

• 𝑝(32𝑘𝑥) changed to 𝑝(𝑗2𝑘𝑥)            j∈ {3, 5, 7, . . . } 

• 𝑝(32𝑘+1𝑥) changed to 𝑝(𝑗2𝑘+1𝑥)            

    

Theorem: A generalization of Schoenberg’s two functions, 𝝋𝒔(𝒙) and 𝝍𝒔(𝒙) , as defined 
below, are continuous and not differentiable on [𝟎, 𝟏], except possibly at  

                   𝒙 =  
𝒂𝟏

𝒋𝟐 +
𝒂𝟐

𝒋𝟒 + ⋯ +
𝒂𝒎

𝒋𝟐𝒎    for some 𝒎;   𝒂𝒊 = {𝟎, 𝟏, 𝟐, … (𝒋𝟐 − 𝟏)} 

          𝝋𝒔(𝒙)=𝟏

𝟐
∑

𝟏

𝟐𝒌 𝒑(𝒋𝟐𝒌𝒙)∞
𝒌=𝟎              j∈ {𝟑, 𝟓, 𝟕, . . . } 

          𝝍𝒔(𝒙) = 𝟏
𝟐

∑
𝟏

𝟐𝒌 𝒑(𝒋𝟐𝒌+𝟏𝒙)∞
𝒌=𝟎  = 𝟏

𝟐
∑

𝟏

𝟐𝒌 𝒑(𝒋𝟐𝒌 ∙ 𝒋 ∙ 𝒙)∞
𝒌=𝟎  = 𝝋𝒔(𝒋𝒙) 

where 

          𝑝(𝑥) =  0                         𝑥 ∈  [0,
𝑗−1

2𝑗
] 

https://caicedoteaching.wordpress.com/wp-content/uploads/2012/01/schoenberg_functions_ryder.pdf
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          𝑝(𝑥) =  𝑗𝑥 −
𝑗−1

2
           𝑥 ∈  [

𝑗−1

2𝑗
,

𝑗+1

2𝑗
] 

          𝑝(𝑥) =  1                         𝑥 ∈  [
𝑗+1

2𝑗
,

3𝑗−1

2𝑗
] 

          𝑝(𝑥) = 3𝑗+1

2
 −𝑗𝑥            𝑥 ∈ [

3𝑗−1

2𝑗
,

3𝑗+1

2𝑗
] 

          𝑝(𝑥) =  0                          𝑥 ∈ [
3𝑗+1

2𝑗
, 2] 

and 𝑝(𝑥 + 2) = 𝑝(𝑥) for all 𝑥 ∈R.  A graph of the function 𝑝  follows. 

    
 

                             Figure 1:  Generalized Schoenberg’s 𝑝 function    

  

Note: If 𝑙 is an odd integer, and 𝑥 ∈ (𝑙 −
𝑗−1

2𝑗
, 𝑙 +

𝑗−1

2𝑗
  ), then 𝑝(𝑥) = 1 

            If 𝑙 is an even integer, and 𝑥 ∈ (𝑙 −
𝑗−1

2𝑗
, 𝑙 +

𝑗−1

2𝑗
  ), then 𝑝(𝑥)= 0    

 

Proof: 

I. Show that 𝜑𝑠(𝑥) =  
1

2
∑

1

2𝑘 𝑝(𝑗2𝑘𝑥)∞
𝑘=0  is continuous on [0,1] 

Let {𝑠𝑘(𝑥)} = { 1

2𝑘 𝑝(𝑗2𝑘𝑥)}        𝑘 ∈N        

𝑇ℎ𝑒𝑛 |
1

2𝑘 𝑝(𝑗2𝑘𝑥)| ≤ 1

2𝑘    for each 𝑘         (since 0≤ 𝑝(𝑗2𝑘𝑥) ≤ 1) 

So each term in the sequence is bounded above by 1

2𝑘 .     

We know that ∑ 1

2𝑘  ∞
𝑘=0 is an infinite geometric series with r< 1, and so it converges. 
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Since the series of upper bounds converges, then by the Weierstrass-M test,   

                             ∑ 1

2𝑘  𝑝(𝑗2𝑘𝑥) ∞
𝑘=0  converges uniformly on [0,1]. 

Therefore, 
1

2
∑

1

2𝑘 𝑝(𝑗2𝑘𝑥)∞
𝑘=0  also converges uniformly on [0,1] to 𝜑𝑠(𝑥). 

Now define {𝑓𝑛} = {
1

2
∑ 𝑆𝑖(𝑥)𝑛

𝑖=1 }
𝑛=1

∞

 to be the sequence of partial sums of 𝜑𝑠(𝑥) . 

Then {𝑓𝑛} converges uniformly on [0,1] to 𝜑𝑠(𝑥) since the corresponding series converges 

uniformly to 𝜑𝑠(𝑥). 

Note that  each 𝑆𝑘(𝑥) =
1

2𝑘 𝑝(𝑗2𝑘𝑥) is the product and composition of continuous 

functions, and therefore it is continuous. 
So each 𝑓𝑛(𝑥)is the sum of continuous functions, so it is continuous. 

Since {𝑓𝑛} is a sequence of continuous functions which converges uniformly on [0,1] to 

𝜑𝑠(𝑥), we can conclude that: 

       𝜑𝑠(𝑥)= 1
2

∑
1

2𝑘 𝑝(𝑗2𝑘𝑥)∞
𝑘=0   is continuous on [0,1].    See IV in Background Information. 

Similarly, 𝜓𝑠(𝑥) is also continuous on [0,1]. 

 

II. Show that 𝜑𝑠(𝑥) is nowhere differentiable on (0,1): 

(Proof by contradiction) 

Let t∈ (0,1).  Assume that 𝜑′𝑠(𝑡) exists. 

Then by a previous lemma (VI in Background Information), 

if 0 < 𝑎𝑛 < 𝑡 < 𝑏𝑛 < 1,  and  𝑎𝑛 → 𝑡 as 𝑛 → ∞,  and 𝑏𝑛 → 𝑡 as 𝑛 → ∞,  then 

                                          lim 
𝑛→∞

𝜑𝑠(𝑏𝑛)−𝜑𝑠(𝑎𝑛)

𝑏𝑛−𝑎𝑛
 = 𝜑′𝑠(𝑡) 

We will construct 2 sequences, {𝑎𝑛} and {𝑏𝑛} which contradict our assumption: 

 

Let 𝑘�̂� = [𝑗2𝑛𝑡]           where [𝑥]=the integer part of 𝑥;  and 𝑡 not of the form: 

          𝑎1

𝑗2 +
𝑎2

𝑗4 + ⋯ +
𝑎𝑚

𝑗2𝑚    for some 𝑚;   𝑎𝑖 = {0, 1, 2, … (𝑗2 − 1)};  𝑗 ∈ {3,5,7, … } 

Note: This restriction on the form of 𝑡 is required so that [𝑗2𝑛𝑡] is always strictly less than 𝑗2𝑛𝑡. 
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Let 𝑎�̂�  = 𝑘�̂� ∙ 𝑗−2𝑛= [𝑗2𝑛𝑡](𝑗−2𝑛) 

Let 𝑏�̂�  = 𝑘�̂� ∙ 𝑗−2𝑛 + 𝑗−2𝑛  = [𝑗2𝑛𝑡](𝑗−2𝑛) + 𝑗−2𝑛  

Note: 𝑏�̂� − 𝑎�̂� = 𝑗−2𝑛  

 

First we prove that 𝟎 < 𝒂�̂� < 𝒕 < 𝒃�̂� < 𝟏  and  𝒂�̂� → 𝒕 as 𝒏 → ∞,  and 𝒃�̂� → 𝒕 as 𝒏 → ∞: 

Proof of claim: 

ia). Show that 𝑎�̂�  > 0: 

  𝑎�̂�  =  [𝑗2𝑛𝑡](𝑗−2𝑛)          by how we defined 𝑎�̂�   

We know that 𝑗−2𝑛  > 0         since 𝑗 ≥ 3 

So we need to show that [𝑗2𝑛𝑡] ≥ 1 

So we need 𝑗2𝑛 ≥ 𝑡−1 

So we need  ln 𝑗2𝑛 ≥ ln 𝑡−1  

So we need 2𝑛 ln 𝑗 ≥ −1 ln 𝑡 

So we need 𝑛 ≥
− ln 𝑡

2ln 𝑗
 

So whenever  𝑛 ≥
− 𝑙𝑛 𝑡

2𝑙𝑛 𝑗
 ,  [𝑗2𝑛𝑡] ≥ 1 and 𝑎�̂�  =  [𝑗2𝑛𝑡](𝑗−2𝑛) > 0. 

Since we are dealing with 𝑛 → ∞, we can restrict 𝑛 in this manner. 

 

ib). Show that    𝑎�̂�  < 𝑡  

 [𝑗2𝑛𝑡] < 𝑗2𝑛𝑡        Since the form of 𝑡 is restricted.     

So  𝑎�̂�  =  [𝑗2𝑛𝑡](𝑗−2𝑛)           

              < (𝑗2𝑛𝑡)(𝑗−2𝑛)           

              =𝑡 

So  𝑎�̂� < 𝑡 

                   

ic). Show that 𝑎𝑛 → 𝑡 as 𝑛 → ∞     

We have shown that 𝑎�̂� < 𝑡 

We know that lim
𝑛→∞

𝑡 = 𝑡 

Also, we know that   [𝑗2𝑛𝑡] >  𝑗2𝑛𝑡 − 1 
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                        So [𝑗2𝑛𝑡](𝑗−2𝑛) > (𝑗2𝑛𝑡 − 1)(𝑗−2𝑛) 

                                          So  𝑎�̂�  >  (𝑗2𝑛𝑡 − 1)(𝑗−2𝑛) 

                                          So  𝑎�̂�  > 𝑡 − (𝑗−2𝑛) 

       Now, lim
𝑛→∞

𝑡 − 𝑗−2𝑛  = 𝑡 

Since 𝑡 − (𝑗−2𝑛) < 𝑎�̂� <  𝑡,  we can conclude that lim
𝑛→∞

𝑎�̂� = 𝑡    (Squeeze Thm.) 

 

iia) Show that 𝑏�̂�  < 1: 

We need  𝑏�̂�  =  [𝑗2𝑛𝑡](𝑗−2𝑛) + 𝑗−2𝑛  < 1 

So we need      (𝑗−2𝑛)([𝑗2𝑛𝑡] + 1) < 1 

So we need      [𝑗2𝑛𝑡] + 1 <  𝑗2𝑛  

So we need     [𝑗2𝑛𝑡] <  𝑗2𝑛  −1 

Since  [𝑗2𝑛𝑡] <  𝑗2𝑛𝑡, we will first solve the following inequality: 

                   𝑗2𝑛𝑡 <  𝑗2𝑛  −1 

                    𝑗2𝑛𝑡 −  𝑗2𝑛 < −1 

                    𝑗2𝑛  ( 𝑡 − 1) < −1 

                   𝑗2𝑛 >
1

1−𝑡
 

         So  𝑗2𝑛 > (1 − 𝑡)−1 

                ln 𝑗2𝑛  >  ln(1 − 𝑡)−1 

               2𝑛 ln 𝑗 > −1 ln(1 − 𝑡) 

        So 𝑛 >
−1 ln(1−𝑡)

2 ln 𝑗
 

So whenever  𝑛 >
−1 ln(1−𝑡)

2 ln 𝑗
, we can say:   𝑗2𝑛𝑡 <  𝑗2𝑛 −1  and therefore  [𝑗2𝑛𝑡] <  𝑗2𝑛 −1 and  𝑏�̂�  < 1 

So whenever  𝑛 >
−1 ln(1−𝑡)

2 ln 𝑗
,  𝑏�̂�   < 1 

Since we are dealing with 𝑛 → ∞, we can restrict 𝑛 in this manner. 

 

iib). Show that 𝑏�̂� > 𝑡 : 

        𝑏�̂�  =  [𝑗2𝑛𝑡](𝑗−2𝑛) + 𝑗−2𝑛  

        We know that  [𝑗2𝑛𝑡] > 𝑗2𝑛𝑡 − 1 

        So  [𝑗2𝑛𝑡](𝑗−2𝑛)  > (𝑗2𝑛𝑡 − 1)(𝑗−2𝑛) 
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        So [𝑗2𝑛𝑡](𝑗−2𝑛) > 𝑡 − (𝑗−2𝑛) 

        So [𝑗2𝑛𝑡](𝑗−2𝑛) + (𝑗−2𝑛) > 𝑡 

        So 𝑏�̂� > 𝑡 

       

iic). Show that 𝑏𝑛 → 𝑡 as 𝑛 → ∞: 

Recall, 𝑏�̂�  =  [𝑗2𝑛𝑡](𝑗−2𝑛) + 𝑗−2𝑛  

Since  [𝑗2𝑛𝑡] < 𝑗2𝑛𝑡, then  

              [𝑗2𝑛𝑡](𝑗−2𝑛) < (𝑗2𝑛𝑡)(𝑗−2𝑛) 

       So [𝑗2𝑛𝑡](𝑗−2𝑛) + 𝑗−2𝑛 < (𝑗2𝑛𝑡)(𝑗−2𝑛) + 𝑗−2𝑛 = 𝑡 + 𝑗−2𝑛  

       So 𝑏�̂� <  𝑡 + 𝑗−2𝑛  

Now, lim
𝑛→∞

(𝑡 + 𝑗−2𝑛) = 𝑡 

 

We have shown above that 𝑏�̂� > 𝑡, and we know that lim
𝑛→∞

𝑡 = 𝑡 

Since 𝑡 < 𝑏�̂� <  𝑡 + 𝑗−2𝑛, we can conclude that lim
𝑛→∞

𝑏�̂� = 𝑡.       (Squeeze Thm.) 

 

So we have shown that   0< 𝑎�̂�  < 𝑡 < 𝑏�̂�  < 1   for large enough values of 𝑛 and that  

lim
𝑛→∞

𝑎�̂� = 𝑡 and lim
𝑛→∞

𝑏�̂� = 𝑡. 

 

Now we consider two groups of 𝑘�̂�:  odd 𝑘�̂� and even 𝑘�̂� 

There are either infinitely many 𝑘�̂� which are odd or infinitely many 𝑘�̂� which are even 

 

Case i: There are infinitely many even 𝑘�̂�  

Let {𝑘𝑛} be a subsequence of {𝑘�̂� } such that 𝑘𝑛 is even. 

Let {𝑎𝑛} and {𝑏𝑛} be the corresponding sequences: 

                  𝑎𝑛  = 𝑘𝑛(𝑗−2𝑛)   and     𝑏𝑛  = 𝑘𝑛(𝑗−2𝑛) + 𝑗−2𝑛  

 

𝜑𝑠(𝑏𝑛) - 𝜑𝑠(𝑎𝑛) = 1
2
 ∑ 1

2𝑘 ∙ 𝑝(𝑗2𝑘𝑏𝑛)∞
𝑘=0  − 1

2
 ∑ 1

2𝑘 ∙ 𝑝(𝑗2𝑘𝑎𝑛)∞
𝑘=0  
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                           = 1
2
 ∑ 1

2𝑘 ∙ 𝑝(𝑗2𝑘(𝑘𝑛𝑗−2𝑛 + 𝑗−2𝑛))∞
𝑘=0  − 1

2
 ∑ 1

2𝑘 ∙ 𝑝(𝑗2𝑘𝑘𝑛𝑗−2𝑛)∞
𝑘=0   Sub in values  of 𝑏𝑛  & 𝑎𝑛 

                           = 1
2
 ∑ 1

2𝑘 ∙ 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛))∞
𝑘=0  − 1

2
 ∑ 1

2𝑘 ∙ 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛)∞
𝑘=0   

                           = 1
2
 ∑ 1

2𝑘 ∙∞
𝑘=0  (𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 + 𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛))    Combine series, factor out  1

2𝑘
 

                           = 1
2

 ∑ 1

2𝑘
𝑛−1
𝑘=0  (𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛))   

                                   +  1
2
 ∑ 1

2𝑘 ∙∞
𝑘=𝑛  (𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛))   express the series as 2 sums 

                                  = 𝑀1+ 𝑀2 

Now we will get a lower bound for 𝑀1+ 𝑀2: 

First find a lower bound for 𝑀1   (𝑘 < 𝑛): 

Note that the smallest possible value of 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 + 𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛) occurs when both 

𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛))  𝑎𝑛𝑑  𝑝(𝑗2(𝑘−𝑛)𝑘𝑛)   lie in the interval when   𝑝(𝑥) = 3𝑗+1

2
 −𝑗𝑥 , where the slope 

is at its smallest value (−𝑗).  (See proof in original proof for further explanation.) 

So the smallest value occurs when       𝑝(𝑗2(𝑘−𝑛)𝑘𝑛+ 𝑗2(𝑘−𝑛))−𝑝(𝑗2(𝑘−𝑛)𝑘𝑛) 

𝑗2(𝑘−𝑛)  = −j 

So the smallest value occurs when     𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛)  = −𝑗(𝑗2(𝑘−𝑛)) 

So 𝑀1= 1
2
 ∑ 1

2𝑘
𝑛−1
𝑘=0  (𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛))   from above 

             ≥ 1
2
 ∑ 1

2𝑘
𝑛−1
𝑘=0 (−𝑗)(𝑗2(𝑘−𝑛))          Substitute in the LB of 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 + 𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛) 

             = −𝑗

2
 ∑ 1

2𝑘
𝑛−1
𝑘=0 (𝑗2(𝑘−𝑛)) =  −𝑗

2
 ∑ (

𝑗2

2
)

𝑘
𝑛−1
𝑘=0

1

𝑗2𝑛 

             = −𝑗

2∙𝑗2𝑛 ∑ (
𝑗2

2
)

𝑘
𝑛−1
𝑘=0         This is a finite geometric series which we sum below 

             = −𝑗

2∙𝑗2𝑛
(

1−(
𝑗2

2
)

𝑛

1−(
𝑗2

2
)

) 

            = ( −𝑗

(𝑗2−2)(𝑗2𝑛)
) ((

𝑗2

2
)

𝑛

−  1)       this is a Lower Bound for 𝑀1 
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Now we find a simplified expression for 𝑀2 (𝑘 ≥ 𝑛): 

𝑀2= 1
2
 ∑ 1

2𝑘 ∙∞
𝑘=𝑛  (𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛))) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛) 

Consider (𝑗2(𝑘−𝑛)𝑘𝑛). This is the product of an odd number and an even number, and so it 
is even. So 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛)=0. 
 
Consider  (𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛)). This is the sum of an even number and an odd number, 

and so it is odd. So 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛))=1 
 

So 𝑀2= 1
2
 ∑ 1

2𝑘
∞
𝑘=𝑛 (1 − 0)     Substituting in values for 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 + 𝑗2(𝑘−𝑛)) & 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛) 

             = 1
2
 ∑ 1

2𝑘
∞
𝑘=𝑛 =  1

2
(

1

2𝑛−1) = 1

2𝑛     

So 𝑀2 = 1

2𝑛     

 

Now consider  
𝜑𝑠(𝑏𝑛)−𝜑𝑠(𝑎𝑛)

𝑏𝑛−𝑎𝑛
 = 𝑀1+𝑀2

𝑗−2𝑛
 

                                                              = 𝑗2𝑛(𝑀1 + 𝑀2)       

                                                              ≥ 𝑗2𝑛 ((
−𝑗

(𝑗2−2)(𝑗2𝑛)
) ((

𝑗2

2
)

𝑛

−  1) +
1

2𝑛)  Sub in value of 𝑀2 & LB for 𝑀1 

                                                             = (𝑗2

2
)

𝑛

(
𝑗2−𝑗−2

𝑗2−2
) +

𝑗

𝑗2−2
       Since 𝑗 ≥ 3,  this diverges to ∞ as 𝑛 → ∞. 

So lim
𝑛→∞

𝜑𝑠(𝑏𝑛)−𝜑𝑠(𝑎𝑛)

𝑏𝑛−𝑎𝑛
 does not exist when 𝑘�̂� is even and 𝑥 ∈ (0,1), except possibly when 

                   𝑥 =  
𝑎1

𝑗2 +
𝑎2

𝑗4 + ⋯ +
𝑎𝑚

𝑗2𝑚    for some 𝑚;   𝑎𝑖 = {0, 1, 2, … (𝑗2 − 1)} 

Therefore, 𝜑′𝑠(𝑥) does not exist when 𝑘�̂� is even and  𝑥 ∈ (0,1), except possibly when 

                     𝑥 =  
𝑎1

𝑗2 +
𝑎2

𝑗4 + ⋯ +
𝑎𝑚

𝑗2𝑚    for some 𝑚;   𝑎𝑖 = {0, 1, 2, … (𝑗2 − 1)} 

Case ii: There are infinitely many odd 𝑘�̂�  

Let {𝑘𝑛} be a subsequence of {𝑘�̂� } such that 𝑘𝑛 is odd. 
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Let {𝑎𝑛} and {𝑏𝑛} be the corresponding sequences. 

𝜑𝑠(𝑏𝑛) - 𝜑𝑠(𝑎𝑛) = 1
2
 ∑ 1

2𝑘 ∙ 𝑝(𝑗2𝑘𝑏𝑛)∞
𝑘=0  − 1

2
 ∑ 1

2𝑘 ∙ 𝑝(𝑗2𝑘𝑎𝑛)∞
𝑘=0  

                                  = 1
2
 ∑ 1

2𝑘 ∙ 𝑝(𝑗2𝑘(𝑘𝑛𝑗−2𝑛 + 𝑗−2𝑛))∞
𝑘=0  − 1

2
 ∑ 1

2𝑘 ∙ 𝑝(𝑗2𝑘𝑘𝑛𝑗−2𝑛)∞
𝑘=0  

                                  = 1
2
 ∑ 1

2𝑘 ∙ 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛))∞
𝑘=0  − 1

2
 ∑ 1

2𝑘 ∙ 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛)∞
𝑘=0  

                                  = 1
2
 ∑ 1

2𝑘 ∙∞
𝑘=0  (𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛)) 

                                  =   1
2
 ∑ 1

2𝑘 ∙𝑛−1
𝑘=1  (𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛)) 

                                             +  1
2
 ∑ 1

2𝑘 ∙∞
𝑘=𝑛  (𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛)) 

                                  = 𝑀1+ 𝑀2 

 

Now we will get an upper bound for 𝑀1+ 𝑀2: 

First find an upper bound for 𝑀1  (𝑘 < 𝑛): 

Note that the largest possible value of 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 + 𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛) occurs when both 

𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛))  𝑎𝑛𝑑  𝑝(𝑗2(𝑘−𝑛)𝑘𝑛)     lie in the interval when 𝑝(𝑥) = 𝑗𝑥 −
𝑗−1

2
, where the 

slope is greatest (𝑗) 
 

So the largest value occurs when       𝑝(𝑗2(𝑘−𝑛)𝑘𝑛+ 𝑗2(𝑘−𝑛))−𝑝(𝑗2(𝑘−𝑛)𝑘𝑛) 

𝑗2(𝑘−𝑛)  = j 

So the largest value occurs when     𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛)  = 𝑗(𝑗2(𝑘−𝑛)) 

From above, 𝑀1 = 1
2
 ∑ 1

2𝑘
𝑛−1
𝑘=0  (𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛)) 

                                ≤  1
2
 ∑ 1

2𝑘
𝑛−1
𝑘=0 (𝑗)(𝑗2(𝑘−𝑛))     Substituting in the largest value for 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 + 𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛)   

                                = 𝑗
2
 ∑ 1

2𝑘
𝑛−1
𝑘=0 (𝑗2(𝑘−𝑛))             Factoring out a j 

                                  = 𝑗
2
 ∑ (

𝑗2

2
)

𝑘
𝑛−1
𝑘=0

1

𝑗2𝑛                                using algebra 

                                 = 𝑗

2∙𝑗2𝑛 ∑ (
𝑗2

2
)

𝑘
𝑛−1
𝑘=0                       factoring out  1

𝑗2𝑛                                
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                                = 𝑗

2∙𝑗2𝑛
(

1−(
𝑗2

2
)

𝑛

1−(
𝑗2

2
)

)                         summing the finite geometric series 

                              = ( 𝑗

(𝑗2−2)(𝑗2𝑛)
) ((

𝑗2

2
)

𝑛

−  1)       this is an Upper Bound for 𝑀1 

 

Now we find a simplified expression for 𝑀2 (𝑘 ≥ 𝑛): 

Consider (𝑗2(𝑘−𝑛)𝑘𝑛). This is the product of an odd number and an odd number, and so it is 

odd.  So 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛)=1.  
 
Consider  (𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛)). This is the sum of an odd number and an odd number, and 

so it is even.  So 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛))=0 
 

𝑀2= 1
2
 ∑ 1

2𝑘 ∙∞
𝑘=𝑛 (𝑝(𝑗2(𝑘−𝑛)𝑘𝑛 +  𝑗2(𝑘−𝑛)) − 𝑝(𝑗2(𝑘−𝑛)𝑘𝑛))    from above 

      = 1
2
 ∑ 1

2𝑘
∞
𝑘=𝑛 (0 − 1) = 1

2
 ∑ 1

2𝑘 (−1)∞
𝑘=𝑛 = −

1

2
∑

1

2𝑘 =∞
𝑘=𝑛  − 1

2
(

1

2𝑛−1) = − 1

2𝑛                                 

So 𝑀2 = − 1

2𝑛     

 

Now consider  𝜑𝑠(𝑏𝑛)−𝜑𝑠(𝑎𝑛)

𝑏𝑛−𝑎𝑛
 = 𝑀1+𝑀2

𝑗−2𝑛  

                                                 = 𝑗2𝑛(𝑀1 + 𝑀2) 

                                                 ≤ 𝑗2𝑛 ((
𝑗

(𝑗2−2)(𝑗2𝑛)
) ((

𝑗2

2
)

𝑛

−  1) −
1

2𝑛 )   Subbing in value of 𝑀2&  UB of 𝑀1 

                                                 =− (𝑗2

2
)

𝑛

(
𝑗2−𝑗−2

𝑗2−2
) −

𝑗

𝑗2−2
        This diverges to −∞ as 𝑛 → ∞ since 𝑗 ≥ 3 

So lim
𝑛→∞

𝜑𝑠(𝑏𝑛)−𝜑𝑠(𝑎𝑛)

𝑏𝑛−𝑎𝑛
 does not exist when  𝑘�̂� odd and 𝑥 ∈ (0,1), except possibly when 

                                   𝑥 =  
𝑎1

𝑗2 +
𝑎2

𝑗4 + ⋯ +
𝑎𝑚

𝑗2𝑚    for some 𝑚;   𝑎𝑖 = {0, 1, 2, … (𝑗2 − 1)} 
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Therefore, 𝜑′𝑠(𝑡) does not exist when 𝑘�̂� is odd and  𝑥 ∈ (0,1), except possibly when 

                                   𝑥 =  
𝑎1

𝑗2 +
𝑎2

𝑗4 + ⋯ +
𝑎𝑚

𝑗2𝑚    for some 𝑚;   𝑎𝑖 = {0, 1, 2, … (𝑗2 − 1)} 

Therefore, 𝜑′
𝑠
(𝑡) does not exist for 𝑥 ∈ (0,1), except possibly when 

                                    𝑥 =  
𝑎1

𝑗2 +
𝑎2

𝑗4 + ⋯ +
𝑎𝑚

𝑗2𝑚    for some 𝑚;   𝑎𝑖 = {0, 1, 2, … (𝑗2 − 1) 

Therefore, 𝜑𝑠(𝑡)  is not differentiable on (0,1), except possibly when 

            𝑥 =  
𝑎1

𝑗2 +
𝑎2

𝑗4 + ⋯ +
𝑎𝑚

𝑗2𝑚    for some 𝑚;   𝑎𝑖 = {0, 1, 2, … (𝑗2 − 1)} 

Since 𝜓𝑠(𝑡) = 𝜑𝑠(𝑗𝑡), we can conclude that   𝜓𝑠(𝑡) is not differentiable on (0,1), 

      except possibly when 𝑥 =  
𝑎1

𝑗2 +
𝑎2

𝑗4 + ⋯ +
𝑎𝑚

𝑗2𝑚    for some 𝑚;   𝑎𝑖 = {0, 1, 2, … (𝑗2 − 1)} 

 

III. Show that 𝜑𝑠(𝑥) is not differentiable when 𝑥 = 0: 

For this proof, we construct a sequence {ℎ𝑛} and show that:  

                 lim
ℎ𝑛→0

𝜑𝑠(ℎ𝑛)−𝜑𝑠(0)

ℎ𝑛−0
 =  lim

𝑛→∞

𝜑𝑠(ℎ𝑛)−𝜑𝑠(0)

ℎ𝑛−0
     does not exist 

𝑁𝑜𝑡𝑒: 𝜑𝑠(0) =  
1

2
∑

1

2𝑘 𝑝(𝑗2𝑘 ∙ 0)∞
𝑘=0 = 1

2
 ∑ 1

2𝑘 𝑝(0) ∞
𝑘=0 = 0 

Let {ℎ𝑛} = { 1

𝑗2𝑛
}              ( So ℎ𝑛 →0 as n→ ∞) 

𝜑𝑠(ℎ𝑛) = 𝜑𝑠 (
1

𝑗2𝑛) 

             =1

2
 ∑ 1

2𝑘  𝑝(𝑗2𝑘 ∙ 𝑗−2𝑛)∞
𝑘=0  

             =1

2
 ∑ 1

2𝑘  𝑝(𝑗2(𝑘−𝑛))∞
𝑘=0  

             = 1
2
 ∑ 1

2𝑘  𝑝(𝑗2(𝑘−𝑛))𝑛−1
𝑘=0  + 1

2
 ∑ 1

2𝑘  𝑝(𝑗2(𝑘−𝑛))∞
𝑘=𝑛     

                       Note: if 𝑘 < 𝑛, (𝑗2(𝑘−𝑛)) ≤
1

𝑗2  ≤ 1

9
≤ 𝑗−1

2𝑗
      for j≥ 3.     Thus 𝑝(𝑗2(𝑘−𝑛)) = 0 

               = 
1

2
∑

1

2𝑘  𝑝(𝑗2(𝑘−𝑛))∞
𝑘=𝑛          Note: 𝑗2(𝑘−𝑛)is odd for 𝑘 ≥ 𝑛, so 𝑝(𝑗2(𝑘−𝑛))=1 

                                                                                                           

                = 
1

2
 ∑ 1

2𝑘
∞
𝑘=𝑛 (1) = 1

2𝑛 
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Now  𝜑𝑠(ℎ𝑛)−𝜑𝑠(0)

ℎ𝑛−0
 = 

1

2𝑛 − 0

1

𝑗2𝑛 
 −0

 =(
𝑗2

2
)

𝑛

                        Since 𝑗 ≥ 3, this diverges to ∞ as 𝑛 → ∞. 

Therefore, 𝜑′𝑠(0) does not exist and similarly  𝜓′𝑠(0) does not exist. 

 

IV. Show that 𝜑𝑠(𝑥) and 𝜓𝑠(𝑥) are not differentiable when 𝑡=1: 

For this proof, we construct a sequence {𝑔𝑛} and show that: 

                          𝑙𝑖𝑚
𝑔𝑛→1

𝜑𝑠(𝑔𝑛)−𝜑𝑠(1)

𝑔𝑛−1
= 𝑙𝑖𝑚

𝑛→∞

𝜑𝑠(𝑔𝑛)−𝜑𝑠(1)

𝑔𝑛−1
  does not exist 

 

Note:  𝜑𝑠(1)= 1
2
 ∑ 1

2𝑘 
𝑝(𝑗2𝑘 ∙ 1) ∞

𝑘=0 = 
1

2
  ∑ 1

2𝑘  
𝑝(𝑗2𝑘)∞

𝑘=0                     

                          =  1
2
 ∑ 1

2𝑘  
(1)     =  

1

2
 (2)  =  1    ∞

𝑘=0  

Now we construct {𝑔𝑛} and examine 𝜑𝑠(𝑔𝑛): 

Let {𝑔𝑛} = {1 −  
1

𝑗2𝑛 }                                                           ( So 𝑔𝑛 →1 as n→ ∞) 

𝜑𝑠(𝑔𝑛) = 𝜑𝑠(1 −  
1

𝑗2𝑛 ) 

               = 1
2
 ∑ 1

2𝑘  
𝑝(𝑗2𝑘(1 −  

1

𝑗2𝑛 ))∞
𝑘=0        

                = 1
2
 ∑ 1

2𝑘  
𝑝(𝑗2𝑘  − 𝑗2(𝑘−𝑛))∞

𝑘=0          

               =  1
2
 ∑ 1

2𝑘  
𝑝(𝑗2𝑘  − 𝑗2(𝑘−𝑛))𝑛 −1

𝑘=0   +   1
2
 ∑ 1

2𝑘  
𝑝(𝑗2𝑘  − 𝑗2(𝑘−𝑛))∞

𝑘=𝑛        

Note:    If 𝑘 < 𝑛, (𝑗2(𝑘−𝑛)) ≤
1

𝑗2  < 𝑗−1

2𝑗
    . So 𝑝(𝑗2𝑘  − 𝑗2(𝑘−𝑛)) = 1 as  𝑗2𝑘  − 𝑗2(𝑘−𝑛)  is the difference of an odd 

number and a fraction less than 𝑗−1

2𝑗
   . 

Also if 𝑘 ≥ 𝑛, 𝑝(𝑗2𝑘  − 𝑗2(𝑘−𝑛)) = 0, as  𝑗2𝑘  − 𝑗2(𝑘−𝑛)   is the difference of 2 odd integers                                                                                                           

               = 1
2

∑
1

2𝑘 

𝑛−1
𝑘=0  (1) + 1

2
∑

1

2𝑘 

∞
𝑘=𝑛  (0) 

               = 1
2

∑
1

2𝑘 

𝑛−1
𝑘=0   =  1 − 1

2𝑛 
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So   𝜑𝑠(𝑔𝑛)−𝜑𝑠(1)

𝑔𝑛−1
 = 

(1−
1

2𝑛)−1

(1−
1

𝑗2𝑛)−1
 = (𝑗2

2
)

𝑛

          which diverges to ∞ as 𝑛 → ∞, since 𝑗 ≥ 3 

Therefore, 𝜑′𝑠(1) does not exist. Similarly, 𝜓′𝑠(1) does not exist. 

Therefore, 𝜑′𝑠(𝑥) and  𝜓′𝑠(𝑥) do not exist for 𝑥 ∈ [0,1], except possibly when 

                 𝑥 =  
𝑎1

𝑗2 +
𝑎2

𝑗4 + ⋯ +
𝑎𝑚

𝑗2𝑚    for some 𝑚;   𝑎𝑖 = {0, 1, 2, … (𝑗2 − 1)} 

Therefore, Schoenberg’s two functions, 𝝋𝒔(𝒙) and 𝝍𝒔(𝒙) , as generalized above, are 

continuous and not differentiable on [𝟎, 𝟏] , except possibly when 

                 𝒙 =  
𝒂𝟏

𝒋𝟐 +
𝒂𝟐

𝒋𝟒 + ⋯ +
𝒂𝒎

𝒋𝟐𝒎    for some 𝒎;   𝒂𝒊 = {𝟎, 𝟏, 𝟐, … (𝒋𝟐 − 𝟏) 
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Chapter 4 
Rudin’s Function: Original Proof and Generalization 
 
      Walter Rudin was an Austrian-American mathematician. He published his proof of the 
existence of a real continuous function on the real line which is nowhere differentiable in 
1953. His proof is given below: 
     
Theorem: There exists a real continuous function on the real line which is nowhere 

differentiable. 

Proof: 

Part I: Construct the function 

Define 𝝋(𝒙) = |𝒙| for  (−𝟏 ≤ 𝒙 ≤  𝟏)  and extend the definition of 𝝋(𝒙) to all real 𝒙 by 
requiring that 𝝋(𝒙 +  𝟐)  =  𝝋(𝒙)  
So 𝜑 is a periodic function, of period equal to 2, by virtue of its definition. 
 

First we prove that |𝝋(𝒔) – 𝝋(𝒕)|  ≤  |𝒔 –  𝒕| for all s and t: 

Note: Either |𝑠 − 𝑡| ≥ 1, or |𝑠 − 𝑡| < 1 

Case 1: |𝒔 − 𝒕| ≥ 𝟏 

We know that 0 ≤ 𝜑(𝑠) ≤ 1 and  0 ≤ 𝜑(𝑡) ≤ 1 by how we defined 𝜑(𝑥). 

Therefore, |𝜑(𝑠) − 𝜑(𝑡)| ≤ 1. 

Therefore, |𝜑(𝑠) − 𝜑(𝑡)| ≤  |𝑠 − 𝑡| 

Case 2: |𝒔 − 𝒕| < 𝟏 

Let s*= 𝝋(𝒔) and t*= 𝝋(𝒕) . We consider 4 possibilities for Case 2: 

i)    𝒔 = 𝟐𝒏 + 𝒔∗   and   𝒕 =  𝟐𝒏 + 𝒕∗  

          |𝑠 − 𝑡| = |(2𝑛 + 𝑠∗) − (2𝑛 + 𝑡∗ )| =  |𝑠∗ − 𝑡∗ | = |𝜑(𝑠) − 𝜑(𝑡)|                        

  Therefore, |𝜑(𝑠) − 𝜑(𝑡)| = |𝑠 − 𝑡| 

 

 



42 
 

ii)    𝒔 = 𝟐𝒏 − 𝒔∗ and   𝒕 =  𝟐𝒏 − 𝒕∗ 

          |𝑠 − 𝑡|=|(2𝑛 − 𝑠∗) − (2𝑛 − 𝑡∗ )| =  |𝑡∗ − 𝑠∗| =  |𝑠∗ − 𝑡∗ | = |𝜑(𝑠) − 𝜑(𝑡)| 

Therefore, |𝜑(𝑠) − 𝜑(𝑡)| = |𝑠 − 𝑡| 

 

iii)   𝒔 = 𝟐𝒏 + 𝒔∗    𝒂𝒏𝒅     𝒕 = 𝟐𝒏 − 𝒕∗  

            |𝑠 − 𝑡| =  |(2𝑛 + 𝑠∗ ) − (2𝑛 − 𝑡∗)| 

                             = |𝑠∗ + 𝑡∗| 

                             ≥  |𝑠∗ − 𝑡∗|           since 0 ≤ 𝑠∗ ≤ 1  and 0 ≤ 𝑡∗ ≤ 1   

                             = |𝜑(𝑠) − 𝜑(𝑡)| 

Therefore, |𝜑(𝑠) − 𝜑(𝑡)| ≤ |𝑠 − 𝑡| 

 

iv) 𝒔 = 𝟐𝒏 + 𝒔∗     and     t = 𝟐(𝒏 + 𝟏) − 𝒕∗  

           |𝑠 − 𝑡| = |𝑡 − 𝑠| = |2(𝑛 + 1) − 𝑡∗  − (2𝑛 + 𝑠∗)| 

                          = |2 − 𝑡∗  − 𝑠∗| = |1 − 𝑡∗ + 1 − 𝑠∗| = |(1 − 𝑡∗ ) + (1 − 𝑠∗)| 

                                     Now since    0 ≤ 𝑡∗ ≤ 1 𝑎𝑛𝑑 0 ≤ 𝑠∗ ≤ 1,   (1 − 𝑡∗ ) ≥ 0  and (1 − 𝑠∗) ≥ 0: 

                          ≥ |(1 − 𝑡∗ ) − (1 − 𝑠∗)| 

                          = |𝑠∗ − 𝑡∗ | = |𝜑(𝑠)  − 𝜑(𝑡)| 

        Therefore,  |𝜑(𝑠)  − 𝜑(𝑡)| ≤  |𝑠 − 𝑡| 

 

So we have shown that in all cases, |𝝋(𝒔)  − 𝝋(𝒕)| ≤  |𝒔 − 𝒕| 

 

Next, we investigate whether or not 𝜑 is continuous on the real numbers. 

Let  𝜀 > 0 be given. Let t ∈ 𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑡 − 𝑥| < 𝜀. 

Then by the above proof, |𝜑(𝑡) – 𝜑(𝑥)| ≤  |𝑡 –  𝑥| < 𝜀.    

Therefore, 𝝋(𝒙) is continuous on the real numbers by the definition of continuity. 

Next, we construct the following function, 𝑓(𝑥): 

                                                  𝒇(𝒙) = ∑  (𝟑

𝟒
)𝒏∞

𝒏=𝟎 𝝋(𝟒𝒏𝒙)= ∑  (𝟑

𝟒
)𝒌−𝟏∞

𝒌=𝟏 𝝋(𝟒𝒌−𝟏𝒙) 
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Part II: Show that 𝑓(𝑥) is continuous on R 

Expanding 𝑓(𝑥), we get: 

       𝑓(𝑥) = (3

4
)0 𝜑(40𝑥) + (3

4
)1 𝜑(41𝑥) + (3

4
)2 𝜑(42𝑥) + …. 

The corresponding sequence is:  

      {𝑓𝑘 (𝑥)} = {𝜑(𝑥), (3

4
)1 𝜑(41𝑥), (3

4
)2 𝜑(42𝑥), . . . } 

Since  𝜑(𝑥) ≤ 1, each term in the sequence is bounded (absolute value- wise) above by 𝑀𝑘:  

          |𝑓𝑘(𝑥)| = |(3

4
)

𝑘−1
𝜑(4𝑘−1𝑥) |=  (3

4
)

𝑘−1
|𝜑(4𝑘−1𝑥)|  ≤  (3

4
)

𝑘−1
 = 𝑀𝑘 

Now consider the series formed by the maximum values for each term:  ∑ (3

4
)

𝑘−1∞
𝑘=1  . This is 

the sum of an infinite geometric series with r < 1, and therefore it converges.                                                                                                          

By the Weierstrass-M Test, since |𝑓𝑘(𝑥)| ≤ 𝑀𝑘   (𝑥 ∈ 𝑅;  𝑘 = 1, 2, 3, . . . ) and since                                  
    ∑ 𝑀𝑘

∞
𝑘=1  converges, we can conclude that  

                     ∑ 𝑓𝑘(𝑥) =∞
𝑘=1   ∑  (3

4
)𝑘−1∞

𝑘=1 𝜑(4𝑘−1𝑥)  converges uniformly to 𝑓(𝑥). 

Now define {𝑆𝑛} = {∑ 𝑓𝑖(𝑥)𝑛
𝑖=1 }𝑛=1

∞  to be the sequence of partial sums of 𝑓(𝑥). 

Then {𝑆𝑛} converges uniformly to 𝑓(𝑥) since the corresponding series converges uniformly 
to 𝑓(𝑥). 

Note that  each 𝑓𝑘(𝑥) = (3

4
)

𝑘−1

𝜑(4𝑘−1𝑥)   is the product and composition of continuous 

functions, and therefore it is continuous. 
So each 𝑆𝑛(𝑥) = {∑ 𝑓𝑖 (𝑥)𝑛

𝑖=1 }𝑛=1
∞   is the sum of continuous functions, so it is continuous. 

Since {𝑆𝑛} is a sequence of continuous functions which converges uniformly to 𝑓(𝑥), we 

can conclude that: 

                        𝑓(𝑥) = ∑  (3

4
)𝑘−1∞

𝑘=1 𝜑(4𝑘−1𝑥)  is continuous on the real numbers. Therefore, 

                        𝑓(𝑥) = ∑  (3

4
)𝑛∞

𝑛=0 𝜑(4𝑛𝑥)  is continuous on the real numbers. 
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Part III: Show that 𝑓(𝑥) is nowhere differentiable 

First we construct a difference function, 𝛾𝑛: 

Fix a real number x and a positive integer m. Put  𝜹𝒎 = ± 𝟏

𝟐
(𝟒−𝒎) where the sign is chosen so that 

there is no integer between 4𝑚𝑥 and  4𝑚(𝑥 + 𝛿𝑚  ). This is possible, since  4𝑚|𝛿𝑚  | = 
1

2
 .                             

Define: 

           𝜸𝒏 = 
𝝋(𝟒𝒏(𝒙+𝜹𝒎)) − 𝝋(𝟒𝒏𝒙)

𝜹𝒎
 

We want to investigate the value of 𝛾𝑛  when 𝑛 >  𝑚 and when 𝑛 ≤  𝑚. 

First consider  𝒏 >  𝒎: 

4𝑛𝛿𝑚 = (4𝑛−𝑚) (4𝑚) (𝛿𝑚) = (4𝑛−𝑚) (±
1

2
) , which is an even integer. 

So  𝛾𝑛  = 𝜑(4𝑛𝑥 + 4𝑛𝛿𝑚 ) − 𝜑(4𝑛 𝑥) 

𝛿𝑚
  =  𝜑(4𝑛𝑥 + 𝑒𝑣𝑒𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ) − 𝜑(4𝑛𝑥) 

𝛿𝑚
 =  𝜑(4𝑛𝑥) − 𝜑(4𝑛𝑥)

𝛿𝑚
   by our definition of 𝜑 

                 = 0 

So for  𝒏 >  𝒎,  𝜸𝒏 = 0. 

 

Now consider  𝒏 ≤  𝒎: 

|𝛾𝑛  | = |𝜑(4𝑛(𝑥+𝛿𝑚)) − 𝜑(4𝑛𝑥)

𝛿𝑚
| ≤  |

(4𝑛(𝑥+𝛿𝑚)) − (4𝑛𝑥)

𝛿𝑚
|  see part I of this proof 

         = |4𝑛𝛿𝑚

𝛿𝑚
|= |4𝑛| = 4𝑛 

So |𝜸𝒏 | ≤  𝟒𝒏  𝒇𝒐𝒓 𝒏 ≤  𝒎. 

 

Now we evaluate |𝜸𝒎 |: 

|𝛾𝑚  | = |𝜑(4𝑚(𝑥+𝛿𝑚)) − 𝜑(4𝑚𝑥)

𝛿𝑚
| = |𝜑(4𝑚𝑥 + 4𝑚𝛿𝑚) − 𝜑(4𝑚𝑥)

𝛿𝑚
| = |𝜑( 4𝑚𝛿𝑚) 

𝛿𝑚
|  Since there is no integer between 

                                                                                                                                                                             (4𝑚𝑥 + 4𝑚𝛿𝑚) and 𝜑(4𝑚𝑥) 

            = |
𝜑(±

1
2

)

(±
1
2

)(4−𝑚)
| = 4𝑚 

So  |𝜸𝒎 |  =  𝟒𝒎 
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Now we investigate the difference quotient |𝒇(𝒙 + 𝜹𝒎) − 𝒇(𝒙) 

𝜹𝒎
|: 

|
𝑓(𝑥 + 𝛿𝑚) − 𝑓(𝑥) 

𝛿𝑚
|= |

∑  (
3
4

)𝑛∞
𝑛=0 𝜑(4𝑛(𝑥+𝛿𝑚)−∑  (

3
4

)𝑛∞
𝑛=0 𝜑(4𝑛𝑥)  

𝛿𝑚
|   

                                = |
∑  (

3
4

)𝑛∞
𝑛=0 [𝜑(4𝑛(𝑥+𝛿𝑚) − 𝜑(4𝑛𝑥)]

𝛿𝑚
|  

                                =  |∑ (
3

4
)

𝑛
(𝛾𝑛)∞

𝑛=0 | 

                                = |∑  (3

4
)𝑛(𝛾𝑛)𝑚

𝑛=0  +  ∑  (3

4
)𝑛(𝛾𝑛)∞

𝑛=𝑚+1 |     write the above summation as 2 sums 

                                = |∑  (3

4
)𝑛(𝛾𝑛)𝑚

𝑛=0  +  0|       since 𝛾𝑛 = 0 𝑓𝑜𝑟 𝑛 > 𝑚 

                                          =  |∑  (3
4
)

𝑛
(𝛾𝑛)𝑚

𝑛=0 |        

                               = |(3

4
)𝑚(𝛾𝑚)  +  ∑  (3

4
)𝑛(𝛾𝑛)𝑚−1

𝑛=0  |     write the above summation as 2 sums 

                               ≥   |(3

4
)𝑚(𝛾𝑚)|  −  |∑  (3

4
)𝑛(𝛾𝑛)𝑚−1

𝑛=0 |    absolute value rules 

                               = (3

4
)𝑚|𝛾𝑚|  −  |∑  (3

4
)𝑛(𝛾𝑛)𝑚−1

𝑛=0 |  

                              ≥  (3

4
)𝑚|𝛾𝑛|  −  ∑  |(3

4
)

𝑛
|𝑚−1

𝑛=0  |𝛾𝑛|   subtract a larger (or equal) quantity from the right 

                              ≥   (3

4
)𝑚|𝛾𝑚| −  ∑  (3

4
)𝑛(4𝑛)𝑚−1

𝑛=0       subtract a larger (or equal) quantity from the right again since  

                                                                                                                                         |𝛾𝑛 | ≤  4𝑛  𝑓𝑜𝑟 n ≤ m 

                   = (
3𝑚

4𝑚   × 4𝑚) − ∑ (
3𝑛

4𝑛   × 4𝑛)𝑚−1
𝑛=0            Substitute  4𝑚 for  |𝛾𝑚| 

                    = 3𝑚 − ∑ 3𝑛𝑚−1
𝑛=0            This is a finite geometric series 

                   =  3𝑚 − (
1 − 3𝑚

1 − 3
)  =  3𝑚  + (1 −3𝑚

2
)  = 1

2
(3𝑚 + 1) 

                 So  |𝒇(𝒙 + 𝜹𝒎) − 𝒇(𝒙) 

𝜹𝒎
| ≥  

𝟏

𝟐
(𝟑𝒎 + 𝟏) 

Consider  𝑓′(𝑥) = 𝑙𝑖𝑚
𝛿𝑚→0

𝑓(𝑥+𝛿𝑚)−𝑓(𝑥)

𝛿𝑚
 .  We have defined 𝛿𝑚 = (±1

2
)(4−𝑚).  

          So as 𝑚 → ∞, 𝛿𝑚 → 0. 

Also, we have found that  |𝑓(𝑥+𝛿𝑚)−𝑓(𝑥)

𝛿𝑚
| ≥  

1

2
(3𝑚 + 1).  

         So as m→ ∞, 1
2

(3𝑚 + 1) → ∞,  

        and therefore, |𝑓(𝑥+𝛿𝑚)−𝑓(𝑥)

𝛿𝑚
| → ∞. 
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So as m→ ∞, 𝛿𝑚 → 0  𝑎𝑛𝑑 |
𝑓(𝑥+𝛿𝑚)−𝑓(𝑥)

𝛿𝑚
| → ∞.  

Therefore, 𝑓′(𝑥) = 𝑙𝑖𝑚
𝛿𝑚→0

𝑓(𝑥+𝛿𝑚)−𝑓(𝑥)

𝛿𝑚
 does not exist for all x.  

Therefore, 𝑓(𝑥) is nowhere differentiable. 

Note: The above proof was adapted from the proof by Walter Rudin in Principles of Mathematical Analysis, Third Edition. 
New York, Mc-Graw-Hill, Inc., 1976. I have expanded the proof to include proofs of claims which were not proven in the 
original and more in depth proofs of several other steps. 

 

Generalization of Proof: 
 
I have generalized Rudin’s function and proof by making the following changes: 

• Change the period to 𝟐𝒂 such that (−𝒂 ≤ 𝒙 ≤ 𝒂);  𝒂 ∈ N 
• Fix a number 𝒃 such that 𝒃 = 𝟒𝒋  where 𝒋 is a natural number. 
• Let 𝒄 be a real number, 1 < 𝑐 < 𝑏𝑎   
• Construct a function 𝑓(𝑥) such that 𝑓(𝑥) = ∑  ( 𝑐

𝑏𝑎
)𝑛∞

𝑛=0 𝜑((𝑏𝑎)𝑛𝑥)       

• Fix a natural number 𝒒 such that 𝒃
𝒒

∈ {2, 4,6, . . . },  𝑞 >
1

𝑎
 , and 𝑞 ≥ 2, and change ± 1

2
 to ± 1

𝑞
 

(*See notes at end of Part I regarding reasons for restrictions on variables.) 
                                                                                                                                                       
Generalized Proof: 

Part I: Construct the function            

Let 𝒂 be a natural number. 

Fix a number 𝒃 such that 𝒃 = 𝟒𝒋 where j is a natural number.  (So 𝑏 is a positive integer 
multiple of 4.) 

Let c be a real number, 𝟏 < 𝒄 < 𝒃𝒂   

Define 𝝋(𝒙) = |𝒙| for  (−𝒂 ≤ 𝒙 ≤  𝒂)  and extend the definition of 𝝋(𝒙) to all real 𝒙 by 
requiring that 
             𝝋(𝒙 +  𝟐𝒂)  =  𝝋(𝒙)  
So 𝜑 is a periodic function, of period equal to 𝟐𝒂, by virtue of its definition.  

Note that  𝜑(0)  = 0,   𝑠𝑜 𝜑(0 + 2𝑎) = 0, 𝑠𝑜  𝜑(2𝑎) = 0, and thus 𝜑(even integer)=0 

Also, for all real numbers s and t,  
                                                    |𝝋(𝒔) – 𝝋(𝒕)|  ≤  |𝒔 –  𝒕|  

(This fact can be proven similarly to the proof given for Rudin’s original function.) 
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Next, we investigate whether or not 𝜑 is continuous on the real numbers. 

Let  𝜀 > 0 be given. Let t ∈ 𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑡 − 𝑥| < 𝜀. 

Then by the above, |𝜑(𝑡) – 𝜑(𝑥)| ≤  |𝑡 –  𝑥| < 𝜀.    

Therefore, 𝜑(𝑥) is continuous on the real numbers by the definition of continuity. 

 

Next, we construct the following function, 𝑓(𝑥): 

                        𝒇(𝒙) = ∑  ( 𝒄

𝒃𝒂
)𝒏∞

𝒏=𝟎 𝝋((𝒃𝒂)𝒏𝒙) = ∑ (
𝒄

𝒃𝒂
)

𝒌−𝟏

𝝋((𝒃𝒂)𝒌−𝟏𝒙)∞
𝒌=𝟏    

 

*Reasons for restrictions on variables: 

We need (𝑏𝑎)𝑛 to be an integer multiple of   2𝑎. Therefore, 𝑏𝑛
 must be an integer multiple of 2,  and 𝑎𝑛 must be 

an integer multiple of 𝑎.  So b must be an integer multiple of 2, and a must be a non-zero integer. I have 
chosen to restrict both a and b to the natural numbers. 

We also need 𝑏
𝑞

 to be an integer multiple of 2a, and we need 𝑞 ≥ 2, so we need 𝑏 ≥ 4 

We need 𝑐 < 𝑏𝑎, in order for  𝑐

𝑏𝑎
< 1, which we need in order to sum an infinite geometric series. 

We need 𝑐 > 1, in order for 𝑙𝑖𝑚
𝑚→∞ 

1

𝑐−1
(𝑐𝑚 + 1) to be  ∞. This is needed for the final part of the proof 

 

Part II: Show that 𝑓(𝑥) is continuous on R 

Expanding 𝑓(𝑥), we get: 

𝑓(𝑥) = ( 𝑐

𝑏𝑎
)0 𝜑((𝑏𝑎)0𝑥) + ( 𝑐

𝑏𝑎
)1 𝜑((𝑏𝑎)1𝑥) + ( 𝑐

𝑏𝑎
)2 𝜑((𝑏𝑎)2𝑥) + …. 

The corresponding sequence is:  

{𝑓𝑘 (𝑥)} = {𝜑(𝑥),   ( 𝑐

𝑏𝑎
)1 𝜑((𝑏𝑎)1𝑥),   ( 𝑐

𝑏𝑎
)2 𝜑((𝑏𝑎)2𝑥), . . . } 

So the 𝑘th  term in this sequence is:  𝑓𝑘(𝑥) = (
𝑐

𝑏𝑎
)

𝑘−1

𝜑((𝑏𝑎)𝑘−1𝑥) 

Since 𝜑(𝑥) ≤ 𝑎, each term in the sequence is bounded (absolute value- wise) above by 𝑀𝑘: 

          |𝑓𝑘(𝑥)| = |( 𝑐

𝑏𝑎
)

𝑘−1
𝜑((𝑏𝑎)𝑘−1𝑥) |=  ( 𝑐

𝑏𝑎
)

𝑘−1
|𝜑((𝑏𝑎)𝑘−1𝑥)|  ≤  ( 𝑐

𝑏𝑎
)

𝑘−1
𝑎  = 𝑀𝑘      
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Now consider the series formed by the maximum values for each term:  ∑ 𝑎( 𝑐

𝑏𝑎
)

𝑘−1∞
𝑘=1  . This 

is the sum of an infinite geometric series with 𝑟 < 1, and therefore it converges.                                                                                                         
                                  

By the Weierstrass-M Test, since |𝑓𝑘(𝑥)| ≤ 𝑀𝑘   (𝑥 ∈ 𝑅;  𝑘 = 1, 2, 3, . . . ) and since         
      ∑ 𝑀𝑘

∞
𝑘=1  converges, we can conclude that  

                       ∑ 𝑓𝑘
∞
𝑘=1 = ∑  ( 𝑐

𝑏𝑎
)𝑘−1∞

𝑘=1 𝜑((𝑏𝑎)𝑘−1𝑥)  converges uniformly to 𝑓(𝑥). 

Now define {𝑆𝑛} = {∑ 𝑓𝑖(𝑥)𝑛
𝑖=1 }𝑛=1

∞  to be the sequence of partial sums of 𝑓(𝑥). 

Then {𝑆𝑛} = {∑ 𝑓𝑖 (𝑥)𝑛
𝑖=1 }𝑛=1

∞   converges uniformly to 𝑓(𝑥) since the corresponding series 
converges uniformly to 𝑓(𝑥). 
 

Note that  each 𝑓𝑘(𝑥) = ( 𝑐

𝑏𝑎
)

𝑘

𝜑((𝑏𝑎)𝑘𝑥)   is the product and composition of continuous 
functions, and therefore it is continuous. 
 
So each 𝑆𝑛(𝑥)is the sum of continuous functions, so it is continuous. 

Since {𝑆𝑛} is a sequence of continuous functions which converges uniformly to 𝑓(𝑥), then 

by Theorem IV in Background Information, we can conclude that: 

 𝑓(𝑥) = ∑  ( 𝑐

𝑏𝑎
)𝑛∞

𝑛=0 𝜑((𝑏𝑎)𝑛𝑥) = ∑ (
𝑐

𝑏𝑎
)

𝑘−1

𝜑((𝑏𝑎)𝑘−1𝑥)∞
𝑘=1    is continuous on R. 

 

Part III: Show that 𝑓(𝑥) is nowhere differentiable 

First we construct a difference function, 𝜸𝒏: 

Fix a real number 𝒙 and a positive integer 𝒎.  

Fix a natural number 𝒒 such that 𝒃
𝒒

∈ {2, 4,6, . . . },  𝑞 >
1

𝑎
 , and 𝑞 ≥ 2. This would make 1

𝑞
< 𝑎  

and 1
𝑞

≤
1

2
 

Since 1
𝑞

< 𝑎,   then 𝜑 (
1

𝑞
) =

1

𝑞
          We need these restrictions on q for subsequent steps in the proof. 

 Put  𝜹𝒎 = ± 𝟏

𝒒
((𝒃𝒂)−𝒎) where the sign is chosen so that there is no integer between 

(𝑏𝑎)𝑚𝑥 and  (𝑏𝑎)𝑚(𝑥 +  𝛿𝑚 ).       This is possible, since  (𝑏𝑎)𝑚|𝛿𝑚 | =
1

𝑞
≤

1

2
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 Define: 

           𝜸𝒏 = 
𝝋((𝒃𝒂)𝒏(𝒙+𝜹𝒎)) − 𝝋((𝒃𝒂)𝒏𝒙)

𝜹𝒎
 

We want to investigate the value of 𝛾𝑛  when 𝑛 >  𝑚 and when 𝑛 ≤  𝑚.  

 

First consider  𝒏 >  𝒎: 

(𝑏𝑎)𝑛𝛿𝑚 = ((𝑏𝑎)𝑛−𝑚) ((𝑏𝑎)𝑚) (𝛿𝑚) 

                   = ((𝑏𝑎)𝑛−𝑚) (±
1

𝑞
)  

                   = ± [(
𝑏

𝑞
) (𝑎)] [(𝑏𝑎)𝑛−𝑚−1] =a multiple of 2𝑎  

                                                             (since (𝑏𝑎)𝑛  is an integer multiple of 2a  and 𝑏
𝑞

 is an  integer multiple of 2a)                                                                                                                                                                                                                                                                                                                        

So  𝛾𝑛  = 
𝜑((𝑏𝑎)𝑛𝑥 + (𝑏𝑎)𝑛𝛿𝑚 ) − 𝜑((𝑏𝑎)𝑛𝑥) 

𝛿𝑚
  =  𝜑

((𝑏𝑎)𝑛𝑥 + 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒆 𝒐𝒇 𝟐𝒂 ) − 𝜑((𝑏𝑎)𝑛𝑥) 

𝛿𝑚
  

                                                                                                                       ( substitute  “𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 2𝑎”  for  (𝑏𝑎)𝑛𝛿𝑚 ) 

               

              =
𝜑((𝑏𝑎)𝑛𝑥) − 𝜑((𝑏𝑎)𝑛𝑥)

𝛿𝑚
  = 0                  By our definition of 𝜑:   𝜑(𝑥 +  𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 2𝑎)  = 𝜑(𝑥) 

So for  𝒏 >  𝒎,  𝜸𝒏 = 0. 

 

 

Now consider  𝒏 ≤  𝒎: 

|𝛾𝑛  | = |
𝜑((𝑏𝑎)𝑛(𝑥+𝛿𝑚)) − 𝜑((𝑏𝑎)𝑛𝑥)

𝛿𝑚
| ≤  |

((𝑏𝑎)𝑛(𝑥+𝛿𝑚)) − ((𝑏𝑎)𝑛𝑥)

𝛿𝑚
|   (See Part I  of proof) 

          = |(𝑏𝑎)𝑛𝛿𝑚

𝛿𝑚
|    

           = |(𝑏𝑎)𝑛| = (𝑏𝑎)𝑛 

So |𝜸𝒏 | ≤  (𝒃𝒂)𝒏  𝒇𝒐𝒓 𝒏 ≤  𝒎 

 

 

 



50 
 

Now we evaluate |𝜸𝒎 |: 

|𝛾𝑚  | = |𝜑((𝑏𝑎)𝑚(𝑥+𝛿𝑚)) − 𝜑((𝑏𝑎)𝑚𝑥)

𝛿𝑚
| = |

𝜑((𝑏𝑎)𝑚𝑥+(𝑏𝑎)𝑚𝛿𝑚) − 𝜑((𝑏𝑎)𝑚𝑥)

𝛿𝑚
| 

          Now since there is no integer between (𝑏𝑎)𝑚(𝑥 + 𝛿𝑚) and (𝑏𝑎)𝑚𝑥,   𝜑((𝑏𝑎)𝑚𝑥 + (𝑏𝑎)𝑚𝛿𝑚) = 𝜑((𝑏𝑎)𝑚𝑥) + 𝜑((𝑏𝑎)𝑚𝛿𝑚): 

           =   |𝜑( (𝑏𝑎)𝑚𝛿𝑚) 

𝛿𝑚
|    

                  = |
𝜑(±

1
𝑞

)

(±1
𝑞

)((𝑏𝑎)−𝑚)
|    Substitute equal quantities in above 

                = |

1

𝑞

(±1
𝑞

)((𝑏𝑎)−𝑚)
|        Since 1

𝑞
< 𝑎, 𝜑 (±1

𝑞) = 1
𝑞

 

            = (𝑏𝑎)𝑚       

So  |𝜸𝒎 |  =  (𝒃𝒂)𝒎 

 

Now we investigate the difference quotient |𝒇(𝒙 + 𝜹𝒎) − 𝒇(𝒙) 

𝜹𝒎
|: 

 

|
𝑓(𝑥 + 𝛿𝑚) − 𝑓(𝑥) 

𝛿𝑚
|= |

∑  (
𝑐

𝑏𝑎
)𝑛∞

𝑛=0 𝜑((𝑏𝑎)𝑛(𝑥+𝛿𝑚)−∑  (
𝑐

𝑏𝑎
)𝑛∞

𝑛=0 𝜑((𝑏𝑎)𝑛𝑥)  

𝛿𝑚
|    

                                =|
∑  (

𝑐
𝑏𝑎

)𝑛∞
𝑛=0 [𝜑((𝑏𝑎)𝑛(𝑥+𝛿𝑚) − 𝜑((𝑏𝑎)𝑛𝑥)]

𝛿𝑚
| 

                               =|∑ (
𝑐

𝑏𝑎
)

𝑛
(𝛾𝑛)∞

𝑛=0 | 

                              = |∑  ( 𝑐

𝑏𝑎
)𝑛(𝛾𝑛)𝑚

𝑛=0  +  ∑  ( 𝑐

𝑏𝑎
)𝑛(𝛾𝑛)∞

𝑛=𝑚+1 |  express above series as the sum of 2 series 

                              = |∑  ( 𝑐

𝑏𝑎
)𝑛(𝛾𝑛)𝑚

𝑛=0  +  0|       since 𝛾𝑛 = 0 𝑓𝑜𝑟 𝑛 > 𝑚 

                                       =  |∑  ( 𝑐
𝑏𝑎

)
𝑛

(𝛾𝑛)𝑚
𝑛=0 | 

                             = |( 𝑐

𝑏𝑎
)𝑚(𝛾𝑚) +  ∑  ( 𝑐

𝑏𝑎
)𝑛(𝛾𝑛)𝑚−1

𝑛=0  |  express above series as a sum  

                            ≥   |( 𝑐

𝑏𝑎
)

𝑚
(𝛾𝑚)|  −  |∑  ( 𝑐

𝑏𝑎
)

𝑛
(𝛾𝑛)𝑚−1

𝑛=0 |    absolute value rules 

                           =   ( 𝑐

𝑏𝑎
)

𝑚
|𝛾𝑚|  −  |∑  ( 𝑐

𝑏𝑎
)𝑛(𝛾𝑛)𝑚−1

𝑛=0 |     c,b,a are positive 

                          ≥   ( 𝑐

𝑏𝑎
)𝑚|𝛾𝑚|  −  ∑ |( 𝑐

𝑏𝑎
)

𝑛
|𝑚−1

𝑛=0  |𝛾𝑛|    subtract a larger (or equal) quantity from the right                                                                                                                                                        
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                 ≥   ( 𝑐

𝑏𝑎
)𝑚|𝛾𝑚| −  ∑  ( 𝑐

𝑏𝑎
)𝑛((𝑏𝑎)𝑛)𝑚−1

𝑛=0      𝑛 ≤ 𝑚, 𝑠𝑜 |𝛾𝑛| ≤ (𝑏𝑎)𝑛 ,  so we are subtracting a larger quantity from   

the right again                                                                                                                                        

                 = (
𝑐𝑚

(𝑏𝑎)𝑚   × (𝑏𝑎)𝑚) − ∑ (
𝑐𝑛

(𝑏𝑎)𝑛   × (𝑏𝑎)𝑛)𝑚−1
𝑛=0         substituting (𝑏𝑎)𝑚  for   |𝛾𝑚|   

                   = 𝑐𝑚 − ∑ 𝑐𝑛𝑚−1
𝑛=0            This is a finite geometric series 

                   =  𝑐𝑚 − (
1 − 𝑐𝑚

1 − 𝑐
)  =  𝑐𝑚  + (1 −𝑐𝑚

𝑐−1
)  =  1

𝑐−1
(𝑐𝑚 + 1) 

So  |𝒇(𝒙 + 𝜹𝒎) − 𝒇(𝒙) 

𝜹𝒎
| ≥  

𝟏

𝒄−𝟏
(𝒄𝒎 + 𝟏) 

 

Consider  𝑓′(𝑥) = 𝑙𝑖𝑚
𝛿𝑚→0

𝑓(𝑥+𝛿𝑚)−𝑓(𝑥)

𝛿𝑚
 .  

          We have defined 𝛿𝑚 = (±1

𝑞
) ((𝑏𝑎)−𝑚).  So as 𝑚 → ∞, 𝛿𝑚 → 0. 

Also, we have found that  |𝑓(𝑥+𝛿𝑚)−𝑓(𝑥)

𝛿𝑚
| ≥  

1

𝑐−1
(𝑐𝑚 + 1).  

        So as 𝑚 → ∞,  1

𝑐−1
(𝑐𝑚 + 1) → ∞         since c> 1 

       and therefore, |𝑓(𝑥+𝛿𝑚)−𝑓(𝑥)

𝛿𝑚
| → ∞.   

So as 𝑚 → ∞, 𝛿𝑚 → 0  𝑎𝑛𝑑 |
𝑓(𝑥+𝛿𝑚)−𝑓(𝑥)

𝛿𝑚
| → ∞. 

Therefore, 𝑓′(𝑥) = 𝑙𝑖𝑚
𝛿𝑚→0

𝑓(𝑥+𝛿𝑚)−𝑓(𝑥)

𝛿𝑚
 does not exist for all x.  

Therefore, 𝒇(𝒙) is nowhere differentiable. 
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Chapter 5 
Concluding Remarks 

       Continuous nowhere differentiable functions are more prevalent than one would think. 

Johan Thim [3] presents a topological proof that  “Almost every function in C[0,1]  (the set of 

continuous functions on [0,1] ) is nowhere differentiable.”   In this paper, I have presented 

an in-depth study of three of these functions and attempted to generalize the parameters 

used. The three functions which I studied (Schwarz, Schoenberg, and Rudin) are all 

constructed from an infinite series. Schoenberg and Rudin also included periodic functions 

and fractals in their constructions, and Schoenberg constructed a space-filling curve. 

These characteristics – infinite series, periodic functions, fractals, and space-filling curves 

– are common in many constructions of continuous nowhere differentiable functions. 

Other functions have been constructed using techniques including purely geometric 

approaches (such as Koch’s snowflake), infinite products (Wen), and  topological 

approaches. (Thim [4]) 

 

     The process of generalizing a function and proof requires an understanding of sequences 

series; an understanding of derivatives; and an understanding of the elements and 

mechanics of the proof and how changing a given number would affect the function and 

proof. Although I presented my successful attempts to generalize these functions and 

proofs, I often was unable to generalize one or more elements. Often the functions required 

integers as opposed to real numbers in their constructions; this can be seen in Rudin’s 

function where the period must be defined as “𝟐𝒂”, 𝒂 being an integer. I attempted 

unsuccessfully to generalize the period in Schoenberg’s function; a simple change of  the 

period from 𝟐 to 𝟒 required proofs of quantities being odd, even, even but not a multiple of 

4, etc., all of which were cumbersome and seemingly impossible to carry out if using a 

variable instead of a constant. 
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      Prior to the 19th century, continuous functions were thought to have derivatives at many, 

if not all, of their points. This view changed when mathematicians, beginning with Bernard 

Bolzano in 1830, began investigating and constructing functions which are nowhere 

differentiable on an interval. Bolzano based his function on a geometric construction. 

Since then, many other mathematicians have contributed to the body of functions which 

are continuous but nowhere differentiable, often employing techniques from Analysis. 

These functions today are relevant in the areas of fractals, chaos, and wavelets. (Thim [4])  

Generalization of these functions aids in their application and use. 
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