Title

The generalized projection operator on reflexive Banach spaces and its applications

Document Type

Article

Publication Date

2005

Abstract

In this paper, we extend the definition of the generalized projection operator πK:B∗→K" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">πK:B∗→K, where B is a reflexive Banach space with dual space B∗" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">B∗ and K is a nonempty, closed and convex subset of B and we study its properties and applications to solving variational inequality.

Share

COinS