Title
The generalized projection operator on reflexive Banach spaces and its applications
Document Type
Article
Publication Date
2005
Abstract
In this paper, we extend the definition of the generalized projection operator πK:B∗→K" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">πK:B∗→K, where B is a reflexive Banach space with dual space B∗" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">B∗ and K is a nonempty, closed and convex subset of B and we study its properties and applications to solving variational inequality.
Recommended Citation
Li, Jinlu, "The generalized projection operator on reflexive Banach spaces and its applications" (2005). Faculty Emeritus. 4.
https://digitalcommons.shawnee.edu/fac_emeritus/4